Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Grazia Cipolleschi is active.

Publication


Featured researches published by Maria Grazia Cipolleschi.


Leukemia | 2000

The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability

Maria Grazia Cipolleschi; Elisabetta Rovida; Zoran Ivanovic; Vincent Praloran; Massimo Olivotto; P Dello Sbarba

In liquid cultures of murine bone marrow cells stimulated with interleukin-3 and granulocyte/macrophage colony-stimulating factor, hypoxia (1% oxygen) induced a reversible block of hematopoiesis, maintaining the progenitors’ expansion potential unreduced. Progenitors repopulating day-14 hypoxic cultures with cells or granulocyte/macrophage colony-forming units (CFU-GM) were found, on the basis of their maintenance in hypoxia (12% and 76%, respectively), to belong to different subsets, the latter being much more efficiently maintained. The maintenance in hypoxic cultures of progenitors detectable by marrow-repopulating ability (MRA) assay was 18% for MRAcell progenitors and 69% for MRACFU progenitors. Thus, the repopulation of hypoxic cultures with cells or CFU-GM closely reflected the presence of progenitors capable of repopulating, with cells or CFU-GM, the bone marrow of lethally irradiated syngeneic animals. Progenitors repopulating hypoxic cultures were, like MRA progenitors, significantly resistant to 5- fluorouracil, progenitors repopulating cultures with CFU-GM being two-fold more resistant than those repopulating cultures with cells. We concluded that the repopulation of day-14 hypoxic cultures occurring after their transfer to air is to be considered an indicator of the maintenance of MRA progenitors in hypoxia. The relevance of these results to stem cell biology and their potential practical applications are discussed.


Leukemia | 2006

Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations.

Serena Giuntoli; Elisabetta Rovida; Valentina Barbetti; Maria Grazia Cipolleschi; Massimo Olivotto; P Dello Sbarba

Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations


Stem Cells | 2007

Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells

Serena Giuntoli; Elisabetta Rovida; Antonella Gozzini; Valentina Barbetti; Maria Grazia Cipolleschi; Massimo Olivotto; Persio Dello Sbarba

We showed that resistance to severe hypoxia defines hierarchical levels within normal hematopoietic populations and that hypoxia modulates the balance between generation of progenitors and maintenance of hematopoietic stem cells (HSC) in favor of the latter. This study deals with the effects of hypoxia (0.1% oxygen) in vitro on Friends murine erythroleukemia (MEL) cells, addressing the question of whether a clonal leukemia cell population comprise functionally different cell subsets characterized by different hypoxia resistance. To identify leukemia stem cells (LSC), we used the Culture Repopulating Ability (CRA) assay we developed to quantify in vitro stem cells capable of short‐term reconstitution (STR). Hypoxia strongly inhibited the overall growth of MEL cell population, which, despite its clonality, comprised progenitors characterized by markedly different hypoxia‐resistance. These included hypoxia‐sensitive colony‐forming cells and hypoxia‐resistant STR‐type LSC, capable of repopulating secondary liquid cultures of CRA assays, confirming what was previously shown for normal hematopoiesis. STR‐type LSC were found capable not only of surviving in hypoxia but also of being mostly in cycle, in contrast with the fact that almost all hypoxia‐surviving cells were growth‐arrested and with what we previously found for HSC. However, quiescent LSC were also detected, capable of delayed culture repopulation with the same efficiency as STR‐like LSC. The fact that even quiescent LSC, believed to sustain minimal residual disease in vivo, were found within the MEL cells indicates that all main components of leukemia cell populations may be present within clonal cell lines, which are therefore suitable to study the sensitivity of individual components to treatments.


Journal of Leukocyte Biology | 1996

Interleukin-4 rapidly down-modulates the macrophage colony-stimulating factor receptor in murine macrophages

Persio Dello Sbarba; Elisabetta Rovida; Barbara Caciagli; Lucia Nencioni; Danilo Labardi; Alessandro Paccagnini; Luca Savini; Maria Grazia Cipolleschi

The activation of macrophages interferes with their response to macrophage colony‐stimulating factor (M‐CSF), the main growth and differentiation factor for mononuclear phagocytes. We tested the rapid effects of interleukin‐4 (IL‐4), the alternative macrophage activator produced by Th2 helper lymphocytes, on the receptor for M‐CSF (M‐CSFR) expressed on the cell surface of murine macrophages. IL‐4 rapidly down‐modulated M‐CSFR in a dose‐dependent fashion. This effect was unique to IL‐4 among a number of Th2‐produced cytokines, none of which, with the exception of IL‐4 itself, is able to activate macrophages. The down‐modulation of M‐CSFR by IL‐4 was partially prevented by the inhibition of the activity of phospholipase C or protein kinase C. The data are consistent with the hypothesis that the down‐modulation of M‐CSFR is a property common to, and exclusive of, macrophage activators, and is driven by different activators via a common mechanism. J. Leukoc. Biol. 60: 644–650; 1996.


Cell Cycle | 2014

The metabolically-modulated stem cell niche: a dynamic scenario regulating cancer cell phenotype and resistance to therapy.

Elisabetta Rovida; Silvia Peppicelli; Silvia Bono; Francesca Bianchini; Ignazia Tusa; Giulia Cheloni; Ilaria Marzi; Maria Grazia Cipolleschi; Lido Calorini; Persio Dello Sbarba

This Perspective addresses the interactions of cancer stem cells (CSC) with environment which result in the modulation of CSC metabolism, and thereby of CSC phenotype and resistance to therapy. We considered first as a model disease chronic myeloid leukemia (CML), which is triggered by a well-identified oncogenetic protein (BCR/Abl) and brilliantly treated with tyrosine kinase inhibitors (TKi). However, TKi are extremely effective in inducing remission of disease, but unable, in most cases, to prevent relapse. We demonstrated that the interference with cell metabolism (oxygen/glucose shortage) enriches cells exhibiting the leukemia stem cell (LSC) phenotype and, at the same time, suppresses BCR/Abl protein expression. These LSC are therefore refractory to the TKi Imatinib-mesylate, pointing to cell metabolism as an important factor controlling the onset of TKi-resistant minimal residual disease (MRD) of CML and the related relapse. Studies of solid neoplasias brought another player into the control of MRD, low tissue pH, which often parallels cancer growth and progression. Thus, a 3-party scenario emerged for the regulation of CSC/LSC maintenance, MRD induction and disease relapse: the “hypoxic” versus the “ischemic” vs. the “acidic” environment. As these environments are unlikely constrained within rigid borders, we named this model the “metabolically-modulated stem cell niche.”


Cell Cycle | 2013

The involvement of a Nanog, Klf4 and c-Myc transcriptional circuitry in the intertwining between neoplastic progression and reprogramming

Ilaria Marzi; Maria Grazia Cipolleschi; Massimo D'Amico; Theodora Stivarou; Elisabetta Rovida; Maria Cristina Vinci; Silvia Pandolfi; Persio Dello Sbarba; Barbara Stecca; Massimo Olivotto

One undisputed milestone of traditional oncology is neoplastic progression, which consists of a progressive selection of dedifferentiated cells driven by a chance sequence of genetic mutations. Recently it has been demonstrated that the overexpression of well-defined transcription factors reprograms somatic cells to the pluripotent stem status. The demonstration raises crucial questions as to whether and to what extent this reprogramming contributes to tumorigenesis, and whether the epigenetic changes involved in it are reversible. Here, we show for the first time that a tumor produced in vivo by a chemical carcinogen is the product of the interaction between neoplastic progression and reprogramming. The experimental model employed the prototype of ascites tumors, the Yoshida AH130 hepatoma and other neoplasias, including human melanoma. AH130 hepatoma was started in the liver by the carcinogen o-aminoazotoluene. This compound binds to and abolishes the p53 protein, producing a genomic instability that promotes both the neoplastic progression and the hepatoma reprogramming. Eventually this tumor contained 100% CD133+ elements and pO2-dependent percentages of the three embryonic transcription factors Nanog, Klf4 and c-Myc. Once transferred into aerobic cultures, the minor cellular fraction expressing this triad generates various types of adherent cells, which are progressively substituted by non-tumorigenic elements committed to fibromuscular, neuronal and glial differentiation. This reprogramming appears to be accomplished stepwise, with the assembly of the triad into a sophisticated transcriptional, oxygen-dependent circuitry, in which Nanog and Klf4 antagonistically regulate c-Myc, and hence, cell hypoxia survival and cell cycle activation.


Cell Cycle | 2014

Hypoxia-resistant profile implies vulnerability of cancer stem cells to physiological agents, which suggests new therapeutic targets

Maria Grazia Cipolleschi; Ilaria Marzi; Roberta Santini; David Fredducci; Maria Cristina Vinci; Massimo D'Amico; Elisabetta Rovida; Theodora Stivarou; Eugenio Torre; Persio Dello Sbarba; Barbara Stecca; Massimo Olivotto

We have previously shown that peculiar metabolic features of cell adaptation and survival in hypoxia imply growth restriction points that are typical of embryonic stem cells and disappear with differentiation. Here we provide evidence that such restrictions can be exploited as specific antiblastic targets by physiological factors such as pyruvate, tetrahydrofolate, and glutamine. These metabolites act as powerful cytotoxic agents on cancer stem cells (CSCs) when supplied at doses that perturb the biochemical network, sustaining the resumption of aerobic growth after the hypoxic dormant state. Experiments were performed in vivo and in vitro using CSCs obtained from various anaplastic tumors: human melanoma, leukemia, and rat hepatoma cells. Pretreatment of melanoma CSCs with pyruvate significantly reduces their self-renewal in vitro and tumorigenicity in vivo. The metabolic network underlying the cytotoxic effect of the physiological factors was thoroughly defined, principally using AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem stage. This network, based on a tight integration of aerobic glycolysis, cellular redox state, and folate metabolism, is centered on the cellular NADP/NADPH ratio that controls the redox pathway of folate utilization in purine synthesis. On the whole, this study indicates that pyruvate, FH4, and glutamine display anticancer activity, because CSCs are committed to survive and maintain their stemness in hypoxia. When CSC need to differentiate and proliferate, they shift from anaerobic to aerobic status, and the few mitochondria available makes them susceptible to the injury of the above physiological factors. This vulnerability might be exploited for novel therapeutic treatments.


Cell Death and Disease | 2013

AML1/ETO sensitizes via TRAIL acute myeloid leukemia cells to the pro-apoptotic effects of hypoxia.

Valentina Barbetti; Ignazia Tusa; Maria Grazia Cipolleschi; Elisabetta Rovida; P Dello Sbarba

We determined the effects of severe hypoxia (∼0.1% O2) on acute myeloid leukemia cells expressing the AML1/ETO oncogene. Incubation of Kasumi-1 cells in hypoxia induced growth arrest, apoptosis and reduction of AML1/ETO protein expression. The conditional expression of AML1/ETO in U937-A/E cells showed that hypoxia induces marked apoptosis in AML1/ETO-expressing cells only, pointing to AML1/ETO as a factor predisposing cells to hypoxia-induced apoptosis. In AML1/ETO-expressing cells, hypoxia enhanced TRAIL expression and its proapoptotic effects. AML1/ETO was found to bind TRAIL promoter and induce TRAIL transcription, although TRAIL expression was restrained by a concomitant relative transcription block. In hypoxia, such a TRAIL repression was removed and an increase of TRAIL expression was induced. Finally, blocking anti-TRAIL antibodies markedly reduced (Kasumi-1 cells) or completely inhibited (U937-A/E cells) hypoxia-induced apoptosis. Taken together, these results indicated that hypoxia induces apoptosis in AML1/ETO-expressing cells via a TRAIL/caspase 8-dependent autocrine loop and that TRAIL is a key regulator of hypoxia-induced apoptosis in these cells.


Current Pharmaceutical Design | 2013

The Culture-Repopulating Ability Assays and Incubation in Low Oxygen: A Simple Way to Test Drugs on Leukaemia Stem or Progenitor Cells

Maria Grazia Cipolleschi; Elisabetta Rovida; Persio Dello Sbarba

The Culture-Repopulating Ability (CRA) assays is a method to measure in vitro the bone marrow-repopulating potential of haematopoietic cells. The method was developed in our laboratory in the course of studies based on the use of growth factor-supplemented liquid cultures to study haematopoietic stem/progenitor cell resistance to, and selection at, low oxygen tensions in the incubation atmosphere. These studies led us to put forward the first hypothesis of the existence in vivo of haematopoietic stem cell niches where oxygen tension is physiologically lower than in other bone marrow areas. The CRA assays and incubation in low oxygen were later adapted to the study of leukaemias. Stabilized leukaemia cell lines, ensuring genetically homogeneous cells and enhancing repeatability of results, were found nevertheless phenotypically heterogeneous, comprising cell subsets exhibiting functional phenotypes of stem or progenitor cells. These subsets can be assayed separately, provided an experimental system capable to select one from another (such as different criteria for incubation in low oxygen) is established. On this basis, a two-step procedure was designed, including a primary culture of leukaemia cells in low oxygen for different times, where drug treatment is applied, followed by the transfer of residual cell population (CRA assay) to a drug-free secondary culture incubated at standard oxygen tension, where the expansion of population is allowed. The CRA assays, applied to cell lines first and then to primary cells, represent a simple and relatively rapid, yet accurate and reliable, method for the pre-screening of drugs potentially active on leukaemias which in our opinion could be adopted systematically before they are tested in vivo.


Oncotarget | 2016

Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction

Silvia Bono; Matteo Lulli; Vito G. D’Agostino; Federico Di Gesualdo; Rosa Loffredo; Maria Grazia Cipolleschi; Alessandro Provenzani; Elisabetta Rovida; Persio Dello Sbarba

BCR/Abl protein drives the onset and progression of Chronic Myeloid Leukemia (CML). We previously showed that BCR/Abl protein is suppressed in low oxygen, where viable cells retain stem cell potential. This study addressed the regulation of BCR/Abl protein expression under oxygen or glucose shortage, characteristic of the in vivo environment where cells resistant to tyrosine kinase inhibitors (TKi) persist. We investigated, at transcriptional, translational and post-translational level, the mechanisms involved in BCR/Abl suppression in K562 and KCL22 CML cells. BCR/abl mRNA steady-state analysis and ChIP-qPCR on BCR promoter revealed that BCR/abl transcriptional activity is reduced in K562 cells under oxygen shortage. The SUnSET assay showed an overall reduction of protein synthesis under oxygen/glucose shortage in both cell lines. However, only low oxygen decreased polysome-associated BCR/abl mRNA significantly in KCL22 cells, suggesting a decreased BCR/Abl translation. The proteasome inhibitor MG132 or the pan-caspase inhibitor z-VAD-fmk extended BCR/Abl expression under oxygen/glucose shortage in K562 cells. Glucose shortage induced autophagy-dependent BCR/Abl protein degradation in KCL22 cells. Overall, our results showed that energy restriction induces different cell-specific BCR/Abl protein suppression patterns, which represent a converging route to TKi-resistance of CML cells. Thus, the interference with BCR/Abl expression in environment-adapted CML cells may become a useful implement to current therapy.

Collaboration


Dive into the Maria Grazia Cipolleschi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge