Maria Grazia Lampugnani
Mario Negri Institute for Pharmacological Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Grazia Lampugnani.
Journal of Cell Science | 2008
Elisabetta Dejana; Fabrizio Orsenigo; Maria Grazia Lampugnani
Endothelial cells control the passage of plasma constituents and circulating cells from blood to the underlying tissues. This specialized function is lost or impaired in several pathological conditions – including inflammation, sepsis, ischemia and diabetes – which leads to severe, and sometimes fatal, organ dysfunction. Endothelial permeability is regulated in part by the dynamic opening and closure of cell-cell adherens junctions (AJs). In endothelial cells, AJs are largely composed of vascular endothelial cadherin (VE-cadherin), an endothelium-specific member of the cadherin family of adhesion proteins that binds, via its cytoplasmic domain, to several protein partners, including p120, β-catenin and plakoglobin. Endogenous pathways that increase vascular permeability affect the function and organization of VE-cadherin and other proteins at AJs in diverse ways. For instance, several factors, including vascular endothelial growth factor (VEGF), induce the tyrosine phosphorylation of VE-cadherin, which accompanies an increase in vascular permeability and leukocyte diapedesis; in addition, the internalization and cleavage of VE-cadherin can cause AJs to be dismantled. From the knowledge of how AJ organization can be modulated, it is possible to formulate several pharmacological strategies to control the barrier function of the endothelium. We discuss the possible use of inhibitors of SRC and other kinases, of agents that increase cAMP levels, and of inhibitors of lytic enzymes as pharmacological tools for decreasing endothelial permeability.
Cell | 2009
Massimiliano Mazzone; Daniela Dettori; Rodrigo Leite de Oliveira; Sonja Loges; Thomas Schmidt; Bart Jonckx; Ya Min Tian; Anthony A. Lanahan; Patrick J. Pollard; Carmen Ruiz de Almodovar; Frederik De Smet; Stefan Vinckier; Julián Aragonés; Koen Debackere; Aernout Luttun; Sabine Wyns; Bénédicte F. Jordan; Alberto Pisacane; Bernard Gallez; Maria Grazia Lampugnani; Elisabetta Dejana; Michael Simons; Peter J. Ratcliffe; Patrick H. Maxwell; Peter Carmeliet
A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy.
Journal of Cell Biology | 2006
Maria Grazia Lampugnani; Fabrizio Orsenigo; Maria Cristina Gagliani; Carlo Tacchetti; Elisabetta Dejana
Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments.
Journal of Cell Biology | 2003
Maria Grazia Lampugnani; Adriana Zanetti; Monica Corada; Takamune Takahashi; Giovanna Balconi; Ferruccio Breviario; Fabrizio Orsenigo; Anna Cattelino; Rolf Kemler; Thomas O. Daniel; Elisabetta Dejana
Confluent endothelial cells respond poorly to the proliferative signals of VEGF. Comparing isogenic endothelial cells differing for vascular endothelial cadherin (VE-cadherin) expression only, we found that the presence of this protein attenuates VEGF-induced VEGF receptor (VEGFR) 2 phosphorylation in tyrosine, p44/p42 MAP kinase phosphorylation, and cell proliferation. VE-cadherin truncated in β-catenin but not p120 binding domain is unable to associate with VEGFR-2 and to induce its inactivation. β-Catenin–null endothelial cells are not contact inhibited by VE-cadherin and are still responsive to VEGF, indicating that this protein is required to restrain growth factor signaling. A dominant-negative mutant of high cell density–enhanced PTP 1 (DEP-1)//CD148 as well as reduction of its expression by RNA interference partially restore VEGFR-2 phosphorylation and MAP kinase activation. Overall the data indicate that VE-cadherin–β-catenin complex participates in contact inhibition of VEGF signaling. Upon stimulation with VEGF, VEGFR-2 associates with the complex and concentrates at cell–cell contacts, where it may be inactivated by junctional phosphatases such as DEP-1. In sparse cells or in VE-cadherin–null cells, this phenomenon cannot occur and the receptor is fully activated by the growth factor.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1999
Paraskevi Andriopoulou; Pilar Navarro; Adriana Zanetti; Maria Grazia Lampugnani; Elisabetta Dejana
Endothelial adherens junctions (AJ) promote intercellular adhesion and may contribute to the control of vascular permeability. These structures are formed by a transmembrane and cell-specific adhesive protein, vascular endothelial (VE)-cadherin, which is linked by its cytoplasmic tail to intracellular proteins called catenins (alpha-catenin, beta-catenin, and plakoglobin) and to the actin cytoskeleton. Little is known about the functional regulation of AJ in endothelial cells. In this study, we analyzed the effect of histamine on AJ organization in cultured endothelial cells. We first observed that histamine induced detectable intercellular gaps only in loosely-confluent cells, whereas this effect was strongly reduced or absent in long-confluent cultures. Despite this difference, in vitro permeability was augmented by histamine in both conditions. In resting conditions, tyrosine phosphorylation of AJ components and permeability values were higher in recently-confluent cells as compared with long-confluent cells. Histamine did not affect the phosphorylation state of AJ in recently-confluent cells but strongly increased this parameter in long-confluent cultures. In addition, in long-confluent cells, histamine caused dissociation of VE-cadherin from the actin cytoskeleton measured by a decrease of the amount of the molecule in the detergent-insoluble fraction of the cell extracts. Dibutyryl cAMP was able to prevent the effect of histamine on both tyrosine phosphorylation of AJ components and on endothelial permeability. The effect of histamine was specific for VE-cadherin because the phosphorylation state of neural (N)-cadherin, the other major endothelial cadherin, was unchanged by this agent. Hence AJ components are a target of histamine activation cascade; we suggest that induction of tyrosine phosphorylation of VE-cadherin and catenins contributes to the histamine effect on permeability, even in absence of frank intercellular gaps and cell retraction.
Nature Communications | 2012
Fabrizio Orsenigo; Costanza Giampietro; Aldo Ferrari; Monica Corada; Ariane Galaup; Sara Sigismund; Giuseppe Ristagno; Luigi Maddaluno; Gou Young Koh; Davide Franco; Vartan Kurtcuoglu; Dimos Poulikakos; Peter Baluk; Donald M. McDonald; Maria Grazia Lampugnani; Elisabetta Dejana
Endothelial adherens junctions maintain vascular integrity. Arteries and veins differ in their permeability but whether organization and strength of their adherens junctions vary has not been demonstrated in vivo. Here we report that vascular endothelial cadherin, an endothelial specific adhesion protein located at adherens junctions, is phosphorylated in Y658 and Y685 in vivo in veins but not in arteries under resting conditions. This difference is due to shear stress-induced junctional Src activation in veins. Phosphorylated vascular endothelial-cadherin is internalized and ubiquitinated in response to permeability-increasing agents such as bradykinin and histamine. Inhibition of Src blocks vascular endothelial cadherin phosphorylation and bradykinin-induced permeability. Point mutation of Y658F and Y685F prevents vascular endothelial cadherin internalization, ubiquitination and an increase in permeability by bradykinin in vitro. Thus, phosphorylation of vascular endothelial cadherin contributes to a dynamic state of adherens junctions, but is not sufficient to increase vascular permeability in the absence of inflammatory agents.
Current Opinion in Cell Biology | 1997
Maria Grazia Lampugnani; E. Dejana
Endothelial cell-cell adhesive junctions are formed by transmembrane adhesive proteins linked to a complex cytoskeletal network. These structures are important not only for maintaining adhesion between endothelial cells and, as a consequence, for the control of vascular permeability, but also for intracellular signalling properties. The establishment of intercellular junctions might affect the endothelial functional phenotype by the downregulation or upregulation of endothelial-specific activities.
Nature | 2013
Luigi Maddaluno; Noemi Rudini; Roberto Cuttano; Luca Bravi; Costanza Giampietro; Monica Corada; Luca Ferrarini; Fabrizio Orsenigo; Eleanna Papa; Gwénola Boulday; Elisabeth Tournier-Lasserve; Françoise Chapon; Cristina Richichi; Saverio Francesco Retta; Maria Grazia Lampugnani; Elisabetta Dejana
Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-β and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-β and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.
Journal of Cell Science | 2008
Patric Turowski; Roberta Martinelli; Rebecca Crawford; David Wateridge; Anna-Pia Papageorgiou; Maria Grazia Lampugnani; Alexander C. Gamp; Dietmar Vestweber; Peter C. Adamson; Elisabetta Dejana; John Greenwood
Lymphocytes emigrate from the circulation to target tissues through the microvascular endothelial cell (EC) barrier. During paracellular transmigration cell-cell junctions have been proposed to disengage and provide homophilic and heterophilic interaction surfaces in a zip-like process. However, it is not known whether ECs modulate junction proteins during this process. Here we show that tyrosine phosphorylation of adherens junction vascular endothelial cadherin (VEC) is required for successful transendothelial lymphocyte migration. We found that adhesion of lymphocytes or activation of the endothelial intercellular adhesion molecule 1 (ICAM1) led to tyrosine phosphorylation of VEC. Substitution of tyrosine for phenylalanine in VEC at positions 645, 731 or 733 produced ECs that were significantly less permissive to lymphocyte migration. We also found that these same tyrosine residues are involved in ICAM1-dependent changes of VEC phosphorylation. ICAM1 activation enhanced transendothelial permeability, suggesting the occurrence of junction disassembly. In agreement, the expression of VEC mutated at Y645F, Y731F or Y733F predominantly affected lymphocyte transmigration in paracellular areas. Taken together, these results demonstrate that phosphorylation of adherens junctions constitutes a molecular endpoint of lymphocyte-induced vascular EC signaling and may be exploited as a new target of anti-inflammatory therapies.
Journal of Cell Science | 2010
Maria Grazia Lampugnani; Fabrizio Orsenigo; Noemi Rudini; Luigi Maddaluno; Gwénola Boulday; Françoise Chapon; Elisabetta Dejana
Little is known about the molecular mechanisms that regulate the organization of vascular lumen. In this paper we show that lumen formation correlates with endothelial polarization. Adherens junctions (AJs) and VE-cadherin (VEC, encoded by CDH5) are required for endothelial apicobasal polarity in vitro and during embryonic development. Silencing of CDH5 gene expression leads to abrogation of endothelial polarity accompanied by strong alterations in lumenal structure. VEC co-distributes with members of the Par polarity complex (Par3 and PKCζ) and is needed for activation of PKCζ. CCM1 is encoded by the CCM1 gene, which is mutated in 60% of patients affected by cerebral cavernous malformation (CCM). The protein interacts with VEC and directs AJ organization and AJ association with the polarity complex, both in cell-culture models and in human CCM1 lesions. Both VEC and CCM1 control Rap1 concentration at cell-cell junctions. We propose that VEC, CCM1 and Rap1 form a signaling complex. In the absence of any of these proteins, AJs are dismantled, cell polarity is lost and vascular lumenal structure is severely altered.