Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Grazia Pennisi is active.

Publication


Featured researches published by Maria Grazia Pennisi.


Parasites & Vectors | 2011

LeishVet guidelines for the practical management of canine leishmaniosis.

Laia Solano-Gallego; Guadalupe Miró; Alek Koutinas; Luís Cardoso; Maria Grazia Pennisi; L. Ferrer; Patrick Bourdeau; Gaetano Oliva; Gad Baneth

The LeishVet group has formed recommendations designed primarily to help the veterinary clinician in the management of canine leishmaniosis. The complexity of this zoonotic infection and the wide range of its clinical manifestations, from inapparent infection to severe disease, make the management of canine leishmaniosis challenging. The recommendations were constructed by combining a comprehensive review of evidence-based studies, extensive clinical experience and critical consensus opinion discussions. The guidelines presented here in a short version with graphical topic displays suggest standardized and rational approaches to the diagnosis, treatment, follow-up, control and prevention of canine leishmaniosis. A staging system that divides the disease into four stages is aimed at assisting the clinician in determining the appropriate therapy, forecasting prognosis, and implementing follow-up steps required for the management of the leishmaniosis patient.


Journal of Feline Medicine and Surgery | 2009

Feline Herpesvirus Infection: ABCD Guidelines on Prevention and Management:

Etienne Thiry; Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Herman Egberink; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Margaret J Hosie; Albert Lloret; Hans Lutz; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Uwe Truyen; Marian C. Horzinek

Overview Feline viral rhinotracheitis, caused by feline herpesvirus (FHV), is an upper respiratory tract disease that is often associated with feline calicivirus and bacteria. In most cats, FHV remains latent after recovery, and they become lifelong virus carriers. Stress or corticosteroid treatment may lead to virus reactivation and shedding in oronasal and conjunctival secretions. Infection Sick cats shed FHV in oral, nasal and conjunctival secretions; shedding may last for 3 weeks. Infection requires direct contact with a shedding cat. Disease signs Feline herpesvirus infections cause acute rhinitis and conjunctivitis, usually accompanied by fever, depression and anorexia. Affected cats may also develop typical ulcerative, dendritic keratitis. Diagnosis Samples consist of conjunctival, corneal or oropharyngeal swabs, corneal scrapings or biopsies. It is not recommended that cats recently vaccinated with a modified-live virus vaccine are sampled. Positive PCR results should be interpreted with caution, as they may be produced by low-level shedding or viral latency. Disease management ‘Tender loving care’ from the owner, supportive therapy and good nursing are essential. Anorexic cats should be fed blended, highly palatable food - warmed up if required. Mucolytic drugs (eg, bromhexine) or nebulisation with saline may offer relief. Broad-spectrum antibiotics should be given to prevent secondary bacterial infections. Topical antiviral drugs may be used for the treatment of acute FHV ocular disease. The virus is labile and susceptible to most disinfectants, antiseptics and detergents.


Veterinary Record | 2005

Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries

Christopher R Helps; P. Lait; A Damhuis; U. Björnehammar; D Bolta; C Brovida; L Chabanne; Herman Egberink; G. Ferrand; A Fontbonne; Maria Grazia Pennisi; Tj Gruffydd-Jones; Danielle Gunn-Moore; Katrin Hartmann; Hans Lutz; E Malandain; Karin Möstl; C. Stengel; Da Harbour; E.A.M. Graat

A full history of the management practices and the prevalence of upper respiratory tract disease (URTD) at 218 rescue shelters, breeding establishments and private households with five or more cats was recorded. Oropharyngeal and conjunctival swabs and blood samples were taken from 1748 cats. The prevalences of feline herpesvirus (FHV), feline calicivirus (FCV), Chlamydophila felis and Bordetella bronchiseptica were determined by PCR on swab samples. An ELISA was applied to determine the prevalence of antibodies to B bronchiseptica. The rates of detection by PCR of each pathogen in the cats in catteries with and without ongoing URTD were, respectively, FHV 16 per cent and 8 per cent; FCV 47 per cent and 29 per cent; C felis 10 per cent and 3 per cent; and B bronchiseptica 5 per cent and 1·3 per cent; the seroprevalences of B bronchiseptica were 61 per cent and 41 per cent, respectively. There was evidence that FHV, FCV and B bronchiseptica played a role in URTD. The risk factors associated with the disease were less than excellent hygiene, contact with dogs with URTD, and larger numbers of cats in the cattery or household.


Journal of Feline Medicine and Surgery | 2009

Feline immunodeficiency. ABCD guidelines on prevention and management.

Margaret J Hosie; Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Herman Egberink; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Albert Lloret; Hans Lutz; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Etienne Thiry; Uwe Truyen; Marian C. Horzinek

Overview Feline immunodeficiency virus (FIV) is a retrovirus closely related to human immunodeficiency virus. Most felids are susceptible to FIV, but humans are not. Feline immunodeficiency virus is endemic in domestic cat populations worldwide. The virus loses infectivity quickly outside the host and is susceptible to all disinfectants. Infection Feline immunodeficiency virus is transmitted via bites. The risk of transmission is low in households with socially well-adapted cats. Transmission from mother to kittens may occur, especially if the queen is undergoing an acute infection. Cats with FIV are persistently infected in spite of their ability to mount antibody and cell-mediated immune responses. Disease signs Infected cats generally remain free of clinical signs for several years, and some cats never develop disease, depending on the infecting isolate. Most clinical signs are the consequence of immunodeficiency and secondary infection. Typical manifestations are chronic gingivostomatitis, chronic rhinitis, lymphadenopathy, weight loss and immune-mediated glomerulonephritis. Diagnosis Positive in-practice ELISA results obtained in a low-prevalence or low-risk population should always be confirmed by a laboratory. Western blot is the ‘gold standard’ laboratory test for FIV serology. PCR-based assays vary in performance. Disease management Cats should never be euthanased solely on the basis of an FIV-positive test result. Cats infected with FIV may live as long as uninfected cats, with appropriate management. Asymptomatic FIV-infected cats should be neutered to avoid fighting and virus transmission. Infected cats should receive regular veterinary health checks. They can be housed in the same ward as other patients, but should be kept in individual cages.


Journal of Feline Medicine and Surgery | 2009

Feline Infectious Peritonitis ABCD Guidelines on Prevention and Management

Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Herman Egberink; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Margaret J Hosie; Albert Lloret; Hans Lutz; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Etienne Thiry; Uwe Truyen; Marian C. Horzinek

Overview Feline Coronavirus infection is ubiquitous in domestic cats, and is particularly common where conditions are crowded. While most FCoV-infected cats are healthy or display only a mild enteritis, some go on to develop feline infectious peritonitis, a disease that is especially common in young cats and multi-cat environments. Up to 12% of FCoV-infected cats may succumb to FIP, with stress predisposing to the development of disease. Disease signs The ‘wet’ or effusive form, characterised by polyserositis (abdominal and/or thoracic effusion) and vasculitis, and the ‘dry’ or non-effusive form (pyogranulomatous lesions in organs) reflect clinical extremes of a continuum. The clinical picture of FIP is highly variable, depending on the distribution of the vasculitis and pyogranulomatous lesions. Fever refractory to antibiotics, lethargy, anorexia and weight loss are common non-specific signs. Ascites is the most obvious manifestation of the effusive form. Diagnosis The aetiological diagnosis of FIP ante-mortem may be difficult, if not impossible. The background of the cat, its history, the clinical signs, laboratory changes, antibody titres and effusion analysis should all be used to help in decisionmaking about further diagnostic procedures. At the time of writing, there is no non-invasive confirmatory test available for cats without effusion. Disease management In most cases FIP is fatal. Supportive treatment is aimed at suppressing the inflammatory and detrimental immune response. However, there are no controlled studies to prove any beneficial effect of corticosteroids.


Journal of Feline Medicine and Surgery | 2009

Feline Leukaemia: ABCD Guidelines on Prevention and Management

Hans Lutz; Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Herman Egberink; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Margaret J Hosie; Albert Lloret; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Etienne Thiry; Uwe Truyen; Marian C. Horzinek

Overview Feline leukaemia virus (FeLV) is a retrovirus that may induce depression of the immune system, anaemia and/or lymphoma. Over the past 25 years, the prevalence of FeLV infection has decreased considerably, thanks both to reliable tests for the identification of viraemic carriers and to effective vaccines. Infection Transmission between cats occurs mainly through friendly contacts, but also through biting. In large groups of non-vaccinated cats, around 30–40% will develop persistent viraemia, 30–40% show transient viraemia and 20–30% seroconvert. Young kittens are especially susceptible to FeLV infection. Disease signs The most common signs of persistent FeLV viraemia are immune suppression, anaemia and lymphoma. Less common signs are immune-mediated disease, chronic enteritis, reproductive disorders and peripheral neuropathies. Most persistently viraemic cats die within 2–3 years. Diagnosis In low-prevalence areas there may be a risk of false-positive results; a doubtful positive test result in a healthy cat should therefore be confirmed, preferably by PCR for provirus. Asymptomatic FeLV-positive cats should be retested. Disease management Supportive therapy and good nursing care are required. Secondary infections should be treated promptly. Cats infected with FeLV should remain indoors. Vaccination against common pathogens should be maintained. Inactivated vaccines are recommended. The virus does not survive for long outside the host.


Journal of Feline Medicine and Surgery | 2009

Feline panleukopenia. ABCD guidelines on prevention and management

Uwe Truyen; Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Herman Egberink; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Margaret J Hosie; Albert Lloret; Hans Lutz; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Etienne Thiry; Marian C. Horzinek

Overview Feline panleukopenia virus (FPV) infects all felids as well as raccoons, mink and foxes. This pathogen may survive in the environment for several months and is highly resistant to some disinfectants. Infection Transmission occurs via the faecal-oral route. Indirect contact is the most common route of infection, and FPV may be carried by fomites (shoes, clothing), which means indoor cats are also at risk. Intrauterine virus transmission and infection of neonates can occur. Disease signs Cats of all ages may be affected by FPV, but kittens are most susceptible. Mortality rates are high - over 90% in kittens. Signs of disease include diarrhoea, lymphopenia and neutropenia, followed by thrombocytopenia and anaemia, immunosuppression (transient in adult cats), cerebellar ataxia (in kittens only) and abortion. Diagnosis Feline panleukopenia virus antigen is detected in faeces using commercially available test kits. Specialised laboratories carry out PCR testing on whole blood or faeces. Serological tests are not recommended, as they do not distinguish between infection and vaccination. Disease management Supportive therapy and good nursing significantly decrease mortality rates. In cases of enteritis, parenteral administration of a broad-spectrum antibiotic is recommended. Disinfectants containing sodium hypochlorite (bleach), peracetic acid, formaldehyde or sodium hydroxide are effective.


Veterinary Parasitology | 2012

Detection of Leishmania infantum DNA by real-time PCR in canine oral and conjunctival swabs and comparison with other diagnostic techniques

Gabriella Lombardo; Maria Grazia Pennisi; Tiziana Lupo; Antonella Migliazzo; Alessandra Caprì; Laia Solano-Gallego

The use of non invasive sampling, such as collection of conjunctival swabs, as a diagnostic tool for the detection of Leishmania DNA is of interest. The purpose of this study was to evaluate the diagnostic utility of detecting Leishmania infection with the use of conjunctival swab samples in dogs living in a highly endemic area for leishmaniosis and to investigate, for the first time, the presence of Leishmania DNA in oral swabs in the same population. One hundred sixty-three dogs living outdoor and recruited in various provinces of Sicily were studied. Leishmania infantum indirect fluorescent antibody test (IFAT), delayed-type hypersensitivity reaction to leishmanin (DTH) and real-time PCR of blood (BL), lymph node (LN), conjunctival (CS) and oral swab (OS) samples were performed. The positive PCR percentages in LN, CS, OS and BL samples were: 24.5%, 22.1%, 8.7% and 5.5%, respectively. Serological and DTH positive percentages were 27.0% and 73.8%, respectively. Seropositive and LN-PCR positive dogs had a high likelihood to be positive by CS-PCR. The similar positive PCR percentages found in CS and LN samples suggest the use of CS-PCR as non-invasive alternative technique to LN-PCR for the detection of Leishmania infection in dogs. In addition, this study demonstrated, for the first time, the presence of Leishmania DNA in oral swabs in dogs.


Veterinary Research Communications | 2004

Case report of leishmaniasis in four cats.

Maria Grazia Pennisi; M. Venza; S. Reale; F. Vitale; S. Lo Giudice

M.G. Pennisi1*, M. Venza2, S. Reale3, F. Vitale3 and S. Lo Giudice1 1Department of Medical Veterinary Sciences – Faculty of Veterinary Medicine, University of Messina, Italy; 2Self employer; 3Zooprophylactic Experimental Institute of Sicily ‘‘ A. Mirri ’’, Palermo, Italy *Correspondence: Dipartimento di Scienze Mediche Veterinarie – Facoltà di Medicina Veterinaria, Polo Universitario dell’Annunziata, 98168 Messina, Sicily, Italy E-mail: MariaGrazia.Pennisi @ unime.it


Journal of Feline Medicine and Surgery | 2009

Bordetella Bronchiseptica Infection in Cats: ABCD Guidelines on Prevention and Management:

Herman Egberink; Diane Addie; Sándor Belák; Corine Boucraut-Baralon; Tadeusz Frymus; Tim Gruffydd-Jones; Katrin Hartmann; Margaret J Hosie; Albert Lloret; Hans Lutz; Fulvio Marsilio; Maria Grazia Pennisi; Alan D Radford; Etienne Thiry; Uwe Truyen; Marian C. Horzinek

OverviewBordetella bronchiseptica is a Gram-negative bacterium that colonises the respiratory tract of mammals and is considered to be a primary pathogen of domestic cats. It is sensible to consider B bronchiseptica as a rare cause of zoonotic infections. The bacterium is susceptible to common disinfectants. Infection The bacterium is shed in oral and nasal secretions of infected cats. Dogs with respiratory disease are an infection risk for cats. The microorganism colonises the ciliated epithelium of the respiratory tract of the host, establishing chronic infections. Disease signs A wide range of respiratory signs has been associated with B bronchiseptica infection, from a mild illness with fever, coughing, sneezing, ocular discharge and lymphadenopathy to severe pneumonia with dyspnoea, cyanosis and death. Diagnosis Bacterial culture and PCR lack sensitivity. Samples for isolation can be obtained from the oropharynx (swabs) or via transtracheal wash/bronchoalveolar lavage. Disease management Antibacterial therapy is indicated, even if the signs are mild. Where sensitivity data are unavailable, tetracyclines are recommended. Doxycycline is the antimicrobial of choice. Cats with severe B bronchiseptica infection require supportive therapy and intensive nursing care.

Collaboration


Dive into the Maria Grazia Pennisi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Lloret

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadeusz Frymus

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge