Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Grazia Sarpietro is active.

Publication


Featured researches published by Maria Grazia Sarpietro.


Antimicrobial Agents and Chemotherapy | 2005

Mechanisms of Antibacterial Action of Three Monoterpenes

Domenico Trombetta; Francesco Castelli; Maria Grazia Sarpietro; Vincenza Venuti; Mariateresa Cristani; Claudia Daniele; Antonella Saija; Giuseppe Bisignano

ABSTRACT In the present paper, we report the antimicrobial efficacy of three monoterpenes [linalyl acetate, (+)menthol, and thymol] against the gram-positive bacterium Staphylococcus aureus and the gram-negative bacterium Escherichia coli. For a better understanding of their mechanisms of action, the capability of these three monoterpenes to damage biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein from unilamellar vesicles with different lipidic compositions (phosphatidylcholine, phosphatidylcholine/phosphatidylserine [9:1], phosphatidylcholine/stearylamine [9:1], and phosphatidylglycerol/cardiolipin [9:1]). Furthermore, the interaction of the terpenes tested with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry. Finally, the results were related to the relative lipophilicity and water solubility of the compounds examined. Taken together, our findings lead us to speculate that the antimicrobial effect of (+)menthol, thymol, and linalyl acetate may result, at least partially, from a perturbation of the lipid fraction of microorganism plasma membrane, resulting in alterations of membrane permeability and in leakage of intracellular materials. Besides being related to physicochemical characteristics of the drugs (such as lipophilicity and water solubility), this effect seems to be dependent on lipid composition and net surface charge of microbial membranes. Furthermore, the drugs might cross the cell membranes, penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.


Biomaterials | 2008

Biocompatibility of poly(d,l-lactide-co-glycolide) nanoparticles conjugated with alendronate

Elisabetta Cenni; Donatella Granchi; Sofia Avnet; Caterina Fotia; Manuela Salerno; Dorotea Micieli; Maria Grazia Sarpietro; Rosario Pignatello; Francesco Castelli; Nicola Baldini

Nanoparticles made of a conjugate of poly(D,L-lactide-co-glycolide) with alendronate (PLGA-ALE NPs), were prepared by emulsion/solvent evaporation technique. The conjugation yield, determined by MALDI TOF analysis, was 30-35%. PLGA-ALE NPs size, evaluated by photon correlation spectroscopy, was 198.7+/-0.2 nm. Haemocompatibility studies using different concentrations of PLGA-ALE NPs did not show any significant effect on haemolysis, leukocyte number, platelet activation, APTT and complement consumption, in comparison with blood incubated with phosphate buffered saline (PBS). A significant reduction of the prothrombin activity was demonstrated after incubation with 560 microg/ml of PLGA-ALE NPs; a significant increase was observed at the highest dilutions. The viability of human umbilical vein endothelial cells and bone marrow stromal cells (BMSC), evaluated through the neutral red test, was not affected by PLGA-ALE NPs. There were no significant differences in cell-associated alkaline phosphatase between BMSC incubated with PLGA-ALE NP- and PBS-added media. These results demonstrated that PLGA-ALE NPs had an acceptable degree of blood compatibility and were not cytotoxic; therefore, they may be considered suitable for intravenous administration.


Drug Development and Industrial Pharmacy | 2011

In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain.

Lucia Montenegro; Agata Campisi; Maria Grazia Sarpietro; Claudia Carbone; Rosaria Acquaviva; Giuseppina Raciti; Giovanni Puglisi

Context: Solid lipid nanoparticles (SLN) are regarded as interesting drug delivery systems and their preparation techniques have gained a great deal of attention. Objective: To evaluate the feasibility of preparing idebenone (IDE) loaded SLN from O/W microemulsions by the phase-inversion temperature (PIT) method. Since SLN have been proposed to improve drug delivery to the brain, IDE was chosen as model drug due to its activity in the treatment of neurodegenerative diseases. Materials and Methods: Cetyl palmitate was used as solid lipid to prepare SLN containing two surfactant/cosurfactant mixtures, isoceteth-20/glyceryl oleate (SLN A) and ceteth-20/glyceryl oleate (SLN B) by the PIT method. Results and discussion: All the formulations tested showed a mean particle diameter ranging from 30 to 95u2009nm and a single peak in size distribution. Stability tests showed that SLN B were more stable than SLN A. IDE release was dependent both on the type of primary surfactant used and the amount of loaded drug. IDE-loaded SLN were effective in inhibiting 2,2′-azobis-(2-amidinopropane)dihydrochloride (APPH)-induced lactic dehydrogenase (LDH) release and reactive oxygen species (ROS) production in primary cultures of astrocytes obtained from rat cerebral cortex. It is noteworthy that SLN B2 (containing ceteth-20 as primary surfactant and 0.7% w/w IDE) were able to prevent entirely both the LDH release and ROS production induced by APPH. Conclusion: The PIT method provided SLN with good technological properties. The tested SLN could be regarded as interesting carriers to overcome the blood brain barrier and increase the efficacy of the loaded drug.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate

Rosario Pignatello; Elisabetta Cenni; Dorotea Micieli; Caterina Fotia; Manuela Salerno; Donatella Granchi; Sofia Avnet; Maria Grazia Sarpietro; Francesco Castelli; Nicola Baldini

BACKGROUND & AIMSnOsteotropic drug-delivery systems have been proposed as a means to provide drugs with affinity to bone tissues. Drugs or proteins have been linked chemically to bone-seeking agents, such as bisphosphonates (BPs); alternatively, drug-loaded nanoparticles have been used to target specific tissues, such as tumor areas. In our current research, these approaches were merged by synthesizing a novel bone-seeking polymer conjugate, from which targetable nanoparticles can be produced.nnnMATERIALS & METHODSnAn amino-BP, alendronate (ALE) was bound covalently to a biodegradable polymer, poly(lactic-co-glycolide) (PLGA), containing a free end carboxylic group. Blood compatibility and cytotoxicity were assessed in vitro.nnnRESULTS & DISCUSSIONnBy a classical solvent-evaporation method, nanoparticles with a mean size of 200-300 nm were prepared from the conjugate; sterilization was achieved by gamma-irradiation, confirming their potential as injectable drug nanocarriers. Owing to the presence of the BP residue, PLGA-ALE nanoparticles were adsorbed onto hydroxyapatite to a higher extent than pure PLGA nanoparticles. The PLGA-ALE conjugate did not induce either hemolysis or alterations of the plasmatic phase of coagulation, or cytotoxic effects on endothelial cells and trabecular osteoblasts.nnnCONCLUSIONnThe prepared conjugate represents a novel biomaterial that is able to provide nanoparticles, which can be further loaded with drugs, such as anticancer agents, and addressed to osteolytic or other bone diseases.


European Journal of Pharmaceutical Sciences | 2008

Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect.

Francesco Castelli; Maria Grazia Sarpietro; Dorotea Micieli; Sara Ottimo; Giovanna Pitarresi; Giuseppe Tripodo; Bianca Carlisi; Gaetano Giammona

Inulin has been derivatized with methacrylic anhydride (MA) and succinic anhydride (SA) to obtain a methacrylated/succinilated derivative (INU-MA-SA) able to produce a pH sensitive hydrogel after UV irradiation. The hydrogel was characterized and loaded with diflunisal (10.4, 17 and 24%, w/w) chosen as a model drug. The drug release from INU-MA-SA-based hydrogel to a biomembrane model made by unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) was investigated at pH 4.0 and 7.4 by differential scanning calorimetry (DSC) that appears to be a suitable technique to follow the transfer kinetics of a drug from a controlled release system to a biomembrane model. The drug release from the hydrogel was compared with the dissolution of drug solid form by examining the effects exerted on the thermotropic behaviour of the DMPC unilamellar vesicles. The transferred drug and the release rate were affected by the drug loading as well as by the pH of the external medium. In particular the release was not linearly related to the drug loading but an intermediate loading allowed a better release at both investigated pHs, with a faster and more complete release observed at pH 7.4.


Journal of Pharmaceutical Sciences | 2011

Development, Characterization, and In Vitro and In Vivo Evaluation of Benzocaine- and Lidocaine-Loaded Nanostructrured Lipid Carriers

Carmelo Puglia; Maria Grazia Sarpietro; Francesco Bonina; Francesco Castelli; Magda Zammataro; Santina Chiechio

The present study concerns the in vitro and in vivo evaluation of benzocaine (BENZO) and lidocaine (LIDO) topical delivery from nanostructured lipid carriers (NLCs). Morphology and dimensional distribution of NLCs have been, respectively, characterized by differential scanning calorimetry (DSC) and photon correlation spectroscopy. The release pattern of BENZO and LIDO from NLCs was evaluated in vitro determining drug percutaneous absorption through excised human skin. Radiant heat tail-flick test was carried out in mice to determine the antinociceptive effect of BENZO and LIDO from NLC. DSC studies revealed that the inner oil phase of NLC plays a significant role in stabilizing the particle architecture and increasing the drug solubility. In vitro evidences show that BENZO and LIDO, when incorporated in viscosized NLC dispersions, exhibited a lower flux with respect to formulations containing the free drugs in the aqueous phase. In vivo study enabled to demonstrate that BENZO and LIDO can be released in a prolonged fashion when incorporated into lipid carriers. The results obtained pointed out NLC capability to act as an effective drug reservoir, thus prolonging the anesthetic effect of BENZO and LIDO.


Advanced Healthcare Materials | 2014

Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

Christian Celia; Silvia Ferrati; Shyam S. Bansal; Anne L. van de Ven; Barbara Ruozi; Erika Zabre; Sharath Hosali; Donatella Paolino; Maria Grazia Sarpietro; Daniel Fine; Massimo Fresta; Mauro Ferrari; Alessandro Grattoni

Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 h, sustaining their constant plasma level for many days is a challenge. To address this, we develop, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib-loaded liposomes, and we demonstrate the release of intact vesicles for over 18 d. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments.


International Journal of Pharmaceutics | 2011

Synthesis of n-squalenoyl cytarabine and evaluation of its affinity with phospholipid bilayers and monolayers

Maria Grazia Sarpietro; Sara Ottimo; Maria Chiara Giuffrida; Flavio Rocco; Maurizio Ceruti; Francesco Castelli

Cytarabine (1-β-D-arabinofuranosylcytosine, Ara-C), a pyrimidine nucleoside analogue, is an attractive therapeutic agent for the treatment of both acute and chronic myeloblastic leukemias. 1,1,2-tris-nor-Squalene acid (squaleneCOOH) has been conjugated to cytarabine with the formation of the squalenoyl-cytarabine prodrug, in order to improve the drug lipophilicity and, consequently, the affinity towards the environment of biological membranes, as well as of lipophilic carriers. The interaction of cytarabine and its prodrug with dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and monolayers has been studied by the differential scanning calorimetry and the Langmuir-Blodgett techniques. The interaction has been evaluated considering the effect of the compounds on the DMPC MLV and monolayers behaviour. The aim was to have information on the interaction of the drug and the prodrug with the biological membranes and on the possibility to use liposomes as carriers for the prodrug. The results showed an improved affinity of the prodrug with MLV and monolayers with respect to the free drug.


Aaps Pharmscitech | 2002

Flurbiprofen release from Eudragit RS and RL aqueous nanosuspensions: a kinetic study by DSC and dialysis experiments.

Francesco Castelli; Chiara Messina; Maria Grazia Sarpietro; Rosario Pignatello; Giovanni Puglisi

The present work investigated the release of Flurbiprofen (FLU) from Eudragit RS100® (RS) and Eudragit RL100® (RL) nanosuspensions to a biological model membrane consisting of Dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV). This release was compared with those observed from solid drug particles as well as with dialysis experiments. Nanosuspensions were prepared by a modification of Quasi-Emulsion Solvent Diffusion technique. Drug release was monitored by the Differential Scanning Calorimetry (DSC). FLU dispersed in MLV affects the transition temperature (Tm) of DMPC liposomes, causing a shift towards lower values. The temperature shift is modulated by the drug fraction present in the aqueous lipid bilayer suspension. DSC was also performed, after increasing incubation periods at 37°C, on suspensions of blank liposomes added to fixed amounts of unloaded and FLU-loaded nanosuspensions, as well as to powdered free drug. Tm shifts, caused by the drug released from the polymeric system or by free-drug dissolution during incubation cycles, were compared with those caused by free drug increasing molar fractions dispersed directly in the membrane during their preparation. These results were compared with the drug release and were followed by a classical dialysis technique. Comparing the suitability of the 2 different techniques in order to follow the drug release as well as the differences between the 2 RL and RS polymer systems, it is possible to confirm the efficacy of DSC in studying the release from polymeric nanoparticulate systems compared with the “classical” release test by dialysis. The different rate of kinetic release could be due to void liposomes, which represent a better uptaking system than aqueous solution in dialysis experiments.


International Journal of Pharmaceutics | 2011

Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method

Lucia Montenegro; Maria Grazia Sarpietro; S. Ottimo; Giovanni Puglisi; Francesco Castelli

Solid lipid nanoparticles (SLN) are regarded as interesting carriers to improve sunscreens safety and effectiveness. In this work, surfactant effects on the physico-chemical properties of SLN loading two of the most widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM), were evaluated and the interactions between SLN components and loaded UV-filters were investigated by differential scanning calorimetry (DSC). All the SLN showed a mean size ranging from 30 to 95 nm, and a single peak in size distribution. The use of isoceth-20 or oleth-20 as primary surfactants did not provide SLN with suitable physico-chemical properties since: (a) OMC loaded SLN proved unstable; (b) BMBM could not be loaded. OMC or BMBM loaded SLN prepared using ceteth-20 as primary surfactant were stable but their loading capacity lowered when both sunscreens were loaded simultaneously. DSC analyses showed that OMC distributed inside the SLN and caused a decrease of the lipid matrix molecules cooperativity while BMBM did not affect SLN calorimetric behaviour. When OMC and BMBM were loaded together into these SLN, an interaction between BMBM and OMC occurred. These results suggest that the interactions between sunscreens and between sunscreens and SLN components deserve further investigation to evaluate their effect on UV-filter-loaded SLN effectiveness.

Collaboration


Dive into the Maria Grazia Sarpietro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Di Sotto

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge