Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Hatziapostolou is active.

Publication


Featured researches published by Maria Hatziapostolou.


Cell | 2011

An HNF4α-miRNA Inflammatory Feedback Circuit Regulates Hepatocellular Oncogenesis

Maria Hatziapostolou; Christos Polytarchou; Eleni Aggelidou; Alexandra Drakaki; George A. Poultsides; Savina Jaeger; Hisanobu Ogata; Michael Karin; Kevin Struhl; Margarita Hadzopoulou-Cladaras; Dimitrios Iliopoulos

Hepatocyte nuclear factor 4α (HNF4α) is essential for liver development and hepatocyte function. Here, we show that transient inhibition of HNF4α initiates hepatocellular transformation through a microRNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3, miR-24, and miR-629. Moreover, we show that, once this circuit is activated, it maintains suppression of HNF4α and sustains oncogenesis. Systemic administration of miR-124, which modulates inflammatory signaling, prevents and suppresses hepatocellular carcinogenesis by inducing tumor-specific apoptosis without toxic side effects. As we also show that this HNF4α circuit is perturbed in human hepatocellular carcinomas, our data raise the possibility that manipulation of this microRNA feedback-inflammatory loop has therapeutic potential for treating liver cancer.Hepatocyte nuclear factor 4α (HNF4α) is essential for liver development and hepatocyte function. Here, we show that transient inhibition of HNF4α initiates hepatocellular transformation through a microRNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3, miR-24, and miR-629. Moreover, we show that, once this circuit is activated, it maintains suppression of HNF4α and sustains oncogenesis. Systemic administration of miR-124, which modulates inflammatory signaling, prevents and suppresses hepatocellular carcinogenesis by inducing tumor-specific apoptosis without toxic side effects. As we also show that this HNF4α circuit is perturbed in human hepatocellular carcinomas, our data raise the possibility that manipulation of this microRNA feedback-inflammatory loop has therapeutic potential for treating liver cancer.


Nature | 2014

XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway

Xi Chen; Dimitrios Iliopoulos; Qing Zhang; Qianzi Tang; Matthew B. Greenblatt; Maria Hatziapostolou; Elgene Lim; Wai Leong Tam; Min Ni; Yiwen Chen; Junhua Mai; Haifa Shen; Dorothy Hu; Stanley Adoro; Bella Hu; Minkyung Song; Chen Tan; Melissa D. Landis; Mauro Ferrari; Sandra J. Shin; Myles Brown; Jenny Chang; X. Shirley Liu; Laurie H. Glimcher

Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)—a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)—is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44highCD24low population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.


Annals of the Rheumatic Diseases | 2011

Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression

Elias Stagakis; George Bertsias; Panayotis Verginis; Magdalene Nakou; Maria Hatziapostolou; Kritikos Hd; Dimitrios Iliopoulos; Dimitrios T. Boumpas

Objective MicroRNAs (miRNAs) regulate the expression of genes involved in immune activation. A study was undertaken to characterise the miRNA signature and identify novel genes involved in the regulation of immune responses in systemic lupus erythematosus (SLE). Methods The expression of 365 miRNAs in peripheral blood mononuclear cells of patients with SLE and healthy controls was analysed using TaqMan Low Density Arrays. The results were validated by quantitative real-time PCR and potential target genes were identified using prediction analysis software. The effect of miR-21 on T cell function was assessed by transfection with antago-miR-21 or pre-miR-21. Results A 27-miRNA signature was identified in patients with SLE; 19 miRNAs correlated with disease activity. Eight miRNAs were deregulated specifically in T cells and four miRNAs in B cells. miR-21 was upregulated and strongly correlated with SLE disease activity (r2=0.92). Compared with controls, CD4 T lymphocytes from patients with SLE had higher basal and activation-induced miR-21 expression. Silencing of miR-21 reversed the activated phenotype of T cells from patients with SLE—namely, enhanced proliferation, interleukin 10 production, CD40L expression and their capacity to drive B cell maturation into Ig-secreting CD19+CD38hiIgD−(plasma cells. Overexpression of mMiR-21 in normal T cells led to acquisition of an activated phenotype. Investigation of putative gene- targets showed that PDCD4 (a selective protein translation inhibitor) was suppressed by miR-21 and its expression was decreased in active SLE. Conclusions miRNAs represent potential biomarkers in SLE as their expression reflects underlying pathogenic processes and correlates with disease activity. Upregulated miR-21 affects PDCD4 expression and regulates aberrant T cell responses in human SLE.


Cellular and Molecular Life Sciences | 2011

Epigenetic aberrations during oncogenesis

Maria Hatziapostolou; Dimitrios Iliopoulos

The aberrant epigenetic landscape of a cancer cell is characterized by global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, and changes in histone modification patterns, as well as altered expression profiles of chromatin-modifying enzymes. Recent advances in the field of epigenetics have revealed that microRNAs’ expression is also under epigenetic regulation and that certain microRNAs control elements of the epigenetic machinery. The reversibility of epigenetic marks catalyzed the development of epigenetic-altering drugs. However, a better understanding of the intertwined relationship between genetics, epigenetics and microRNAs is necessary in order to resolve how gene expression aberrations that contribute to tumorigenesis can be therapeutically corrected.


Journal of Biological Chemistry | 2005

Hydrogen Peroxide Stimulates Proliferation and Migration of Human Prostate Cancer Cells through Activation of Activator Protein-1 and Up-regulation of the Heparin Affin Regulatory Peptide Gene

Christos Polytarchou; Maria Hatziapostolou; Evangelia Papadimitriou

It is becoming increasingly recognized that hydrogen peroxide (HP) plays a role in cell proliferation and migration. In the present study we found that exogenous HP significantly induced human prostate cancer LNCaP cell proliferation and migration. Heparin affin regulatory peptide (HARP) seems to be involved in the stimulatory effect of HP, because the latter had no effect on stably transfected LNCaP cells that did not express HARP. Moreover, HP significantly increased HARP mRNA and protein amounts in a concentration- and time-dependent manner. Curcumin and activator protein-1 (AP-1) decoy oligonucleotides abrogated both HP-induced HARP expression and LNCaP cell proliferation and migration. HP increased luciferase activity of the 5′-flanking region of the HARP gene introduced in a reporter gene vector, an effect that was abolished when even one of the two putative AP-1 binding sites of the HARP promoter was mutated. The effect of HP seems to be due to the binding of Fra-1, JunD, and phospho-c-Jun to the HARP promoter. These results support the notion that HARP is important for human prostate cancer cell proliferation and migration, establish the role of AP-1 in the up-regulation of HARP expression by low concentrations of HP, and characterize the AP-1 dimers involved.


Cancer Research | 2011

Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation

Christos Polytarchou; Dimitrios Iliopoulos; Maria Hatziapostolou; Filippos Kottakis; Ioanna G. Maroulakou; Kevin Struhl; Philip N. Tsichlis

The growth and survival of tumor cells in an unfavorable hypoxic environment depend upon their adaptability. Here, we show that both normal and tumor cells expressing the protein kinase Akt2 are more resistant to hypoxia than cells expressing Akt1 or Akt3. This is due to the differential regulation of microRNA (miR) 21, which is upregulated by hypoxia only in Akt2-expressing cells. By upregulating miR-21 upon oxygen deprivation, Akt2 downregulates PTEN and activates all three Akt isoforms. miR-21 also targets PDCD4 and Sprouty 1 (Spry1), and the combined downregulation of these proteins with PTEN is sufficient to confer resistance to hypoxia. Furthermore, the miR-21 induction by Akt2 during hypoxia depends upon the binding of NF-κB, cAMP responsive element-binding protein (CREB), and CBP/p300 to the miR-21 promoter, in addition to the regional acetylation of histone H3K9, all of which are under the control of Akt2. Analysis of the Akt2/miR-21 pathway in hypoxic MMTV-PyMT-induced mouse mammary adenocarcinomas and human ovarian carcinomas confirmed the activity of the pathway in vivo. Taken together, this study identifies a novel Akt2-dependent pathway that is activated by hypoxia and promotes tumor resistance via induction of miR-21.


Gastroenterology | 2011

Neurotensin Signaling Activates MicroRNAs-21 and -155 and Akt, Promotes Tumor Growth in Mice, and Is Increased in Human Colon Tumors

Kyriaki Bakirtzi; Maria Hatziapostolou; Iordanes Karagiannides; Christos Polytarchou; Savina Jaeger; Dimitrios Iliopoulos; Charalabos Pothoulakis

BACKGROUND & AIMS Neurotensin promotes inflammation and colon cancer via the neurotensin-1 receptor (NTR1). MicroRNAs (miR) regulate protein synthesis by degrading or preventing translation of mRNAs. We analyzed expression of 365 different microRNAs by human colonic epithelial cells (NCM460) after activation of NTR1. METHODS We performed microarray analysis of mRNA expression by neurotensin-stimulated NCM460 cells that overexpressed NTR1. Nuclear factor-κB (NF-κB) binding sites were identified and tumorigenesis was assessed using soft agar assays and xenograft analysis of severe combined immunodeficiency mice. Targets of neurotensin-regulated microRNAs were identified via bioinformatic, real-time polymerase chain reaction, and immunoblot analyses. We analyzed RNA samples from human normal colon and tumor samples. RESULTS Neurotensin stimulated differential expression of 38 microRNAs, including miR-21 and miR-155, which have been associated with tumor growth and contain NF-κB binding sites. Neurotensin expression increased colony formation by HCT-116 cells. Blocking miR-21 and/or miR-155 prevented colony formation (P < .001). In mice, intraperitoneal administration of neurotensin increased the growth rate of HCT-116 xenograft tumors; blocking miR-21 and/or miR-155 slowed this tumor growth. Neurotensin activated Akt in HCT-116 cells; this effect was inhibited by blocking miR-21 and/or miR-155 (P < .001). Neurotensin activated AKT through miR-155-mediated suppression of the phosphatase protein phosphatase 2A catalytic subunit alpha (PPP2CA). Levels of phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling 1 (SOCS1) mRNA, potential targets of miR-21 and miR-155, respectively, were down-regulated by these miRs. Levels of NTR1, miR-21, and miR-155 increased significantly in human colon tumor samples, compared with normal tissues, whereas PPP2CA, SOCS1, and PTEN mRNAs were reduced significantly. CONCLUSIONS NTR1 activation stimulates expression of miR-21 and miR-155 in colonocytes, via Akt and NF-κB, to down-regulate PTEN and SOCS1 and promote growth of tumors in mice. Levels of NTR1, miR-21, and miR-155 increase in human colon tumor samples and correlate with tumor stage.


Gut | 2013

Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice

Hyun Seuk Moon; Xiaowen Liu; Jutta M. Nagel; John P. Chamberland; Kalliope N. Diakopoulos; Mary Brinkoetter; Maria Hatziapostolou; Yan Wu; Simon C. Robson; Dimitrios Iliopoulos; Christos S. Mantzoros

Background Obesity and a high-fat diet are associated with the risk and progression of colon cancer. Low adiponectin levels may play an important role in the development of colon and other obesity-related malignancies. No previous studies have directly investigated the mechanistic effects of adiponectin on colon cancer in the settings of obesity, a high-fat diet and/or adiponectin deficiency. Objective To investigate the effects of adiponectin on the growth of colorectal cancer in adiponectin-deficient or wild-type-C57BL/6 mice fed a low-fat or high-fat diet. Results Mice fed a high-fat-diet gained more weight and had larger tumours than mice fed a low-fat-diet. Adiponectin administration suppressed implanted tumour growth, causing larger central necrotic areas. Adiponectin treatment also suppressed angiogenesis assessed by CD31 staining and VEGFb and VEGFd mRNA expression in tumours obtained from mice fed a high-fat-diet and from adiponectin-deficient mice. Adiponectin treatment decreased serum insulin levels in mice on a high-fat-diet and increased serum-interleukin (IL)-12 levels in adiponectin-deficient mice. In vitro, it was found that adiponectin directly controls malignant potential (cell proliferation, adhesion, invasion and colony formation) and regulates metabolic (AMPK/S6), inflammatory (STAT3/VEGF) and cell cycle (p21/p27/p53/cyclins) signalling pathways in both mouse MCA38 and human HT29, HCT116 and LoVo colon cancer cell lines in a LKB1-dependent way. Conclusion These new mechanistic and pathophysiology studies provide evidence for an important role of adiponectin in colon cancer. The data indicate that adiponectin or analogues might be useful agents in the management or chemoprevention of colon cancer.


International Journal of Cancer | 2001

X-rays modulate extracellular matrix in vivo

Efstathia Giannopoulou; Panagiotis Katsoris; Maria Hatziapostolou; Dimitris Kardamakis; Elena Kotsaki; Christos Polytarchou; Anastasia Parthymou; Stamatis Papaioannou; Evagelia Papadimitriou

X‐rays have an antiangiogenic effect in the chicken embryo chorioallantoic membrane (CAM) model of in vivo angiogenesis. Our study demonstrates that X‐rays induce an early apoptosis of CAM cells, modulate the synthesis and deposition of extracellular matrix (ECM) proteins involved in regulating angiogenesis and affect angiogenesis induced by tumour cells implanted onto the CAM. Apoptosis was evident within 1–2 hr, but not later than 6 hr after irradiation. Fibronectin, laminin, collagen type I, integrin αvβ3 and MMP‐2 protein amounts were all decreased 6 hr after irradiation. In contrast, collagen type IV, which is restricted to basement membrane, was not affected by irradiation of the CAM. There was a similar decrease of gene expression for fibronectin, laminin, collagen type I and MMP‐2, 6 hr after irradiation. The levels of mRNA for integrin αvβ3 and collagen type IV were unaffected up to 24 hr after irradiation. The decrease in both protein and mRNA levels was reversed at later time points and 48 hr after irradiation, there was a significant increase in the expression of all the genes studied. When C6 glioma tumour cells were implanted on irradiated CAMs, there was a significant increase in the angiogenesis induced by tumour cells, compared to that in non‐irradiated CAMs. Therefore, although X‐rays have an initial inhibitory effect on angiogenesis, their action on the ECM enhances new vessel formation induced by glioma cells implanted on the tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcriptional repressor EMSY

Scott A. Ezell; Christos Polytarchou; Maria Hatziapostolou; Ailan Guo; Ioannis Sanidas; Teeru Bihani; Michael J. Comb; George Sourvinos; Philip N. Tsichlis

The protein kinases Akt1, Akt2, and Akt3 possess nonredundant signaling properties, few of which have been investigated. Here, we present evidence for an Akt1-dependent pathway that controls interferon (IFN)-regulated gene expression and antiviral immunity. The target of this pathway is EMSY, an oncogenic interacting partner of BRCA2 that functions as a transcriptional repressor. Overexpression of EMSY in hTERT-immortalized mammary epithelial cells, and in breast and ovarian carcinoma cell lines, represses IFN-stimulated genes (ISGs) in a BRCA2-dependent manner, whereas its knockdown has the opposite effect. EMSY binds to the promoters of ISGs, suggesting that EMSY functions as a direct transcriptional repressor. Akt1, but not Akt2, phosphorylates EMSY at Ser209, relieving EMSY-mediated ISG repression. The Akt1/EMSY/ISG pathway is activated by both viral infection and IFN, and it inhibits the replication of HSV-1 and vesicular stomatitis virus (VSV). Collectively, these data define an Akt1-dependent pathway that contributes to the full activation of ISGs by relieving their repression by EMSY and BRCA2.

Collaboration


Dive into the Maria Hatziapostolou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge