Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Heloisa Massola Shimizu is active.

Publication


Featured researches published by Maria Heloisa Massola Shimizu.


PLOS ONE | 2010

Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

Matheus Correa-Costa; Patricia Semedo; Ana Paula Fernandes da Silva Monteiro; Reinaldo Correia Silva; Rafael Luiz Pereira; Giselle Martins Gonçalves; Geórgia D.M. Marques; Marcos Antonio Cenedeze; Ana Carolina Guimarães Faleiros; Alexandre C. Keller; Maria Heloisa Massola Shimizu; Antonio Carlos Seguro; Marlene Antônia dos Reis; Alvaro Pacheco-Silva; Niels Olsen Saraiva Câmara

Background The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-β protein production was significantly lower in Hemin-treated animals. Conclusion Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.


Stem Cells | 2009

Lineage‐Negative Bone Marrow Cells Protect Against Chronic Renal Failure

Cristianne da Silva Alexandre; Rildo Aparecido Volpini; Maria Heloisa Massola Shimizu; Talita Rojas Sanches; Patricia Semedo; Vera Lúcia di Jura; Niels Olsen Saraiva Câmara; Antonio Carlos Seguro; Lúcia Andrade

Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage‐negative (Lin−) cells to test the hypothesis that Lin− cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham (laparotomy only, untreated); Nx (five‐sixth nephrectomy and untreated); NxLC1 (five‐sixth nephrectomy and receiving 2 × 106 Lin− cells on postnephrectomy day 15); and NxLC3 (five‐sixth nephrectomy and receiving 2 × 106 Lin− cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)‐1β, tumor necrosis factor‐α, and IL‐6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein‐1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin‐dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin− cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin− cell‐treated rats than in untreated rats. Lin− cell treatment significantly improved survival. These data suggest that Lin− cell treatment protects against chronic renal failure. STEM CELLS 2009;27:682–692


American Journal of Physiology-renal Physiology | 2012

Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting NF-κB and upregulating endothelial nitric oxide synthase

Ana C. P. Souza; Rildo Aparecido Volpini; Maria Heloisa Massola Shimizu; Talita Rojas Sanches; Niels Olsen Saraiva Camara; Patricia Semedo; Camila E. Rodrigues; Antonio Carlos Seguro; Lúcia Andrade

The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-κB activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP+EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-l-arginine methyl ester (l-NAME) simultaneously with EPO administration (CLP+EPO+l-NAME). A fifth group (CLP+EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP+EPO rats presented significantly higher inulin clearance than did CLP and CLP+EPO+l-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP+EPO rats; and inulin clearance was significantly higher in CLP+EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP+EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-α activation, NF-κB activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-κB downregulation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation

Renata Campos; Maria Heloisa Massola Shimizu; Rildo Aparecido Volpini; Ana Carolina de Bragança; Lúcia Andrade; Fernanda Degobbi Tenório Quirino dos Santos Lopes; Clarice Rosa Olivo; Daniele Canale; Antonio Carlos Seguro

Sepsis is a common cause of acute kidney injury (AKI) and acute lung injury. Oxidative stress plays as important role in such injury. The aim of this study was to evaluate the effects that the potent antioxidant N-acetylcysteine (NAC) has on renal and pulmonary function in rats with sepsis. Rats, treated or not with NAC (4.8 g/l in drinking water), underwent cecal ligation and puncture (CLP) 2 days after the initiation of NAC treatment, which was maintained throughout the study. At 24 h post-CLP, renal and pulmonary function were studied in four groups: control, control + NAC, CLP, and CLP + NAC. All animals were submitted to low-tidal-volume mechanical ventilation. We evaluated respiratory mechanics, the sodium cotransporters Na-K-2Cl (NKCC1) and the α-subunit of the epithelial sodium channel (α-ENaC), polymorphonuclear neutrophils, the edema index, oxidative stress (plasma thiobarbituric acid reactive substances and lung tissue 8-isoprostane), and glomerular filtration rate. The CLP rats developed AKI, which was ameliorated in the CLP + NAC rats. Sepsis-induced alterations in respiratory mechanics were also ameliorated by NAC. Edema indexes were lower in the CLP + NAC group, as was the wet-to-dry lung weight ratio. In CLP + NAC rats, α-ENaC expression was upregulated, whereas that of NKCC1 was downregulated, although the difference was not significant. In the CLP + NAC group, oxidative stress was significantly lower and survival rates were significantly higher than in the CLP group. The protective effects of NAC (against kidney and lung injury) are likely attributable to the decrease in oxidative stress, suggesting that NAC can be useful in the treatment of sepsis.


PLOS ONE | 2012

Effects of Continuous Erythropoietin Receptor Activator in Sepsis-Induced Acute Kidney Injury and Multi-Organ Dysfunction

Camila E. Rodrigues; Talita Rojas Sanches; Rildo Aparecido Volpini; Maria Heloisa Massola Shimizu; Patrícia Semedo Kuriki; Niels Olsen Saraiva Camara; Antonio Carlos Seguro; Lúcia Andrade

Background Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods Rats were randomized into three groups: control; CLP; and CLP+CERA (5 µg/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting—to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-κB)—and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1β, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-κB was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.


American Journal of Physiology-renal Physiology | 2012

Sildenafil reduces polyuria in rats with lithium-induced NDI.

Talita Rojas Sanches; Rildo Aparecido Volpini; Maria Heloisa Massola Shimizu; Ana Carolina de Bragança; Fabíola M. Oshiro-Monreal; Antonio Carlos Seguro; Lúcia Andrade

Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; α-, β-, and γ-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, γ-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.


Nephrology Dialysis Transplantation | 2008

N-acetylcysteine protects against renal injury following bilateral ureteral obstruction.

Maria Heloisa Massola Shimizu; Alexandre Danilovic; Lúcia Andrade; Rildo Aparecido Volpini; Alexandre Braga Libório; Talita Rojas Sanches; Antonio Carlos Seguro

Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.


Transplantation Proceedings | 2011

Protective Effect of N-acetylcysteine on Early Outcomes of Deceased Renal Transplantation

Alexandre Danilovic; Antonio Marmo Lucon; Miguel Srougi; Maria Heloisa Massola Shimizu; L. E Ianhez; Willian Nahas; Antonio Carlos Seguro

We investigated the effects of the antioxidant N-acetylcysteine (NAC) on early outcomes of deceased donor renal transplantation. Between April 2005 and June 2008, adult primary graft recipients of deceased renal donors were assigned to treatment (n = 38) or control (n = 36) groups and evaluated for 90 days and one year after renal transplantation. The treatment group received NAC orally (600 mg twice daily) from day 0 to 7 postoperatively. Renal function was determined by serum creatinine, MDRD and Cockcroft-Gault estimated GFR (eGFR), delayed graft function (DGF) and dialysis free Kaplan-Meier estimate curve. Serum levels of thiobarbituric acid reactive substances (TBARS), were employed as markers of oxidative stress. The NAC group displayed a lower mean serum creatinine during the first 90 days (P = .026) and at 1 year after transplantation (P = .005). Furthermore, the NAC group showed a higher mean eGFR throughout the first 90 days and at 1 year. DGF was lower among the NAC group (P = .017) and these recipients required fewer days of dialysis (P = .012). Oxidative stress was significantly attenuated with NAC (P < .001). Our results suggested that NAC enhanced early outcomes of deceased donor renal transplantation by attenuating oxidative stress.


Kidney International | 2008

Rosiglitazone reverses tenofovir-induced nephrotoxicity

Alexandre Braga Libório; Lúcia Andrade; Leonardo V.B. Pereira; Talita Rojas Sanches; Maria Heloisa Massola Shimizu; Antonio Carlos Seguro

Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconis-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.


Transplant International | 2009

A MULTI-FACTORIAL BIOLOGICAL MODULATION PROTOCOL THAT AMELIORATES ISCHEMIA-REPERFUSION INJURY SIMULTANEOUSLY REDUCES BILESALT TOXICITY IN PORCINE LIVER TRANSPLANTATION FROM NON-HEART BEATING DONORS

Flávia Silva Reis Medeiros; Marcelo Tatit Sapienza; Elisângela S. Prado; Fabiana Agena; Maria Heloisa Massola Shimizu; Francine Brambate Carvalhinho Lemos; Carlos Alberto Buchpiguel; Luiz Estevam Ianhez; Elias David-Neto

Plasma clearance of 51Cr‐EDTA (51Cr‐EDTA‐Cl) is an alternative method to evaluate glomerular filtration rate (GFR). This study aimed to investigate the concordance between 51Cr‐EDTA‐Cl and renal inulin clearance (In‐Cl) in renal transplant recipients as well to determine the repeatability of 51Cr‐EDTA‐Cl in kidney donors. Forty four kidney recipients and 22 kidney donors were enrolled. Simultaneous measurements of 51Cr‐EDTA‐Cl and In‐Cl were performed. A single dose of 3.7MBq of 51Cr‐EDTA was injected and the plasma disappearance curve was created by taking blood samples at 2, 4, 6 and 8 h after injection. Bland and Altman statistical approach was used to quantify the agreement between In‐Cl and 51Cr‐EDTA‐Cl and to determine the better concordance between all possibilities of measure for the 51Cr‐EDTA‐Cl. The mean of In‐Cl was 44.5 ± 17.9 ml/min/1.73 m2. There was a positive correlation between In‐Cl and all possible measurements of 51Cr‐EDTA‐Cl. 51Cr‐EDTA‐Cl with two samples taken at 4 and 8 h or at 4 and 6 h presenting the narrow limits of agreement and a difference (bias) of 2.8 and 2.7 ml/min, respectively. Two plasma sampling for 51Cr‐EDTA‐Cl was a reliable method to measure GFR compared with In‐Cl and comprises a suitable method to be used in kidney transplanted patients.

Collaboration


Dive into the Maria Heloisa Massola Shimizu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Canale

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lúcia Andrade

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lúcia Andrade

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge