Maria Herlin
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Herlin.
Toxicology Letters | 2009
Leo T.M. van der Ven; Ton van de Kuil; P.E.G. Leonards; Wout Slob; Hellmuth Lilienthal; Sabina Litens; Maria Herlin; Helen Håkansson; Rocío F. Cantón; Martin van den Berg; Theo J. Visser; Henk van Loveren; J.G. Vos; Aldert H. Piersma
The brominated flame retardant (BFR) hexabromocyclododecane was tested in a one-generation reproduction assay in Wistar rats, enhanced for endocrine parameters. A solution of the compound in corn oil was mixed in the feed, targeting at dietary exposure of 0-0.1-0.3-1-3-10-30-100 mg/kg body weight/day (mkd) in parental rats during 10 (males) or 2 (females) weeks premating, during gestation and lactation, and in their F1 offspring from weaning until final necropsy. Effects were assessed in F1 animals. Livers of these animals showed increased HBCD concentrations, in a dose-dependent way. The trabecular bone mineral density of the tibia was dose-dependently decreased in females (BenchMark Dose Lower confidence bound, BMDL=0.056 mkd). The IgG response after immunization with sheep red blood cells (SRBC) was increased in males (BMDL=0.46 mkd). Further sensitive effects were decreased weight of the testis (BMDL=1.5 mkd), increased fraction of neutrophilic granulocytes (BMDL=7.7 mkd), decreased concentration of apolar retinoids in female livers (BMDL=1.3 mkd), and decreased plasma alkaline phosphatase in females (BMDL=8.6 mkd). CYP19/aromatase activity in the ovary was correlated to the concentration of gamma-HBCD in the liver. A developmental origin of these effects is considered, and this is also true for sensitive effects observed in neurobehavioural testing in littermates from the same experiment, i.e. in the brainstem auditory evoked potentials and in a catalepsy test [Lilienthal, H., Van der Ven, L.T.M., Piersma, A.H., Vos, J.G. Neurobehavioral effects of the brominated flame retardant hexabromocyclododecane (HBCD) in rats after pre- and postnatal exposure, in press]. The low BMDLs of these effects may raise concern for human health, particularly when based on body burdens of HBCD, which leads to critical margins of exposure particularly for the occupational setting.
Journal of Biomechanics | 2010
Mikko Finnilä; Peter Zioupos; Maria Herlin; Hanna M. Miettinen; Ulla Simanainen; Helen Håkansson; Juha Tuukkanen; Matti Viluksela; Timo Jämsä
Dioxins are known to decrease bone strength, architecture and density. However, their detailed effects on bone material properties are unknown. Here we used nanoindentation methods to characterize the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on nanomechanical behaviour of bone matrix. Pregnant rats were treated with a single intragastric dose of TCDD (1 microg/kg) or vehicle on gestational day 11. Tibias of female offspring were sampled on postnatal day (PND) 35 or 70, scanned at mid-diaphysis with pQCT, and evaluated by three-point bending and nanoindentation. TCDD treatment decreased bone mineralization (p<0.05), tibial length (p<0.01), cross-sectional geometry (p<0.05) and bending strength (p<0.05). Controls showed normal maturation pattern between PND 35 and 70 with decreased plasticity by 5.3% and increased dynamic hardness, storage and complex moduli by 26%, 13% and 12% respectively (p<0.05), while similar maturation was not observed in TCDD-exposed pups. In conclusion, for the first time, we demonstrate retardation of bone matrix maturation process in TCDD-exposed animals. In addition, the study confirms that developmental TCDD exposure has adverse effects on bone size, strength and mineralization. The current results in conjunction with macromechanical behaviour suggest that reduced bone strength caused by TCDD is more associated with the mineralization and altered geometry of bones than with changes at the bone matrix level.
Toxicology | 2009
Maria Herlin; Fereshteh Kalantari; Natalia Stern; Salomon Sand; Sune Larsson; Matti Viluksela; Jouni T. Tuomisto; Jouko Tuomisto; Juha Tuukkanen; Timo Jämsä; P. Monica Lind; Helen Håkansson
BACKGROUND Both industrial chemicals and environmental pollutants can interfere with bone modeling and remodeling. Recently, detailed toxicological bone studies have been performed following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which exerts most of its toxic effects through the aryl hydrocarbon receptor (AhR). OBJECTIVES The aims of the present study were to quantitatively evaluate changes in bone geometry, mineral density and biomechanical properties following long-term exposure to TCDD, and to further investigate the role of AhR in TCDD-induced bone alterations. To this end, tissue material used in the study was derived from TCDD-exposed Long-Evans (L-E) and Han/Wistar (H/W) rats, which differ markedly in sensitivity to TCDD-induced toxicity due to a strain difference in AhR structure. METHODS Ten weeks old female L-E and H/W rats were administered TCDD s.c. once per week for 20 weeks, at doses corresponding to calculated daily doses of 0, 1, 10, 100 and 1000ngTCDD/kgbw (H/W only). Femur, tibia and vertebra from the L-E and H/W rats were analyzed by peripheral quantitative computed tomography (pQCT) and biomechanical testing at multiple sites. Dose-response modeling was performed to establish benchmark doses for the analyzed bone parameters, and to quantify strain sensitivity differences for those parameters, which were affected by TCDD exposure in both rat strains. RESULTS Bone geometry and bone biomechanical parameters were affected by TCDD exposure, while bone mineral density parameters were less affected. The trabecular area at proximal tibia and the endocortical circumference at tibial diaphysis were the parameters that showed the highest maximal responses. Significant strain differences in response to TCDD treatment were observed, with the L-E rat being the most sensitive strain. For the parameters that were affected in both strains, the differences in sensitivity were quantified, showing the most pronounced (about 49-fold) strain difference for cross-sectional area of proximal tibia. CONCLUSION The study provides novel information about TCDD-induced bone alterations at doses, which are of relevance from a health risk assessment point of view. In addition, the obtained results provide further support for a distinct role of the AhR in TCDD-induced bone alterations, and suggest that the benchmark dose modeling approach is appropriate for quantitative evaluation of bone toxicity parameters.
Toxicology and Applied Pharmacology | 2013
Maria Herlin; Mikko Finnilä; Peter Zioupos; Antti Aula; Juha Risteli; Hanna M. Miettinen; Timo Jämsä; Juha Tuukkanen; Merja Korkalainen; Helen Håkansson; Matti Viluksela
Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr(-/-)) and wild-type (Ahr(+/+)) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200μg/kgbw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr(+/+) mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr(-/-) mice displayed a slightly modified bone phenotype as compared with untreated Ahr(+/+) mice, while TCDD exposure caused only a few changes in bones of Ahr(-/-) mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr(+/+) mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations.
Toxicology Letters | 2011
Lubna E. Elabbas; Maria Herlin; Mikko Finnilä; Filip Rendel; Natalia Stern; Christina Trossvik; Wayne J. Bowers; Jamie Nakai; Juha Tuukkanen; Matti Viluksela; Rachel A. Heimeier; Agneta Åkesson; Helen Håkansson
Exposure to polychlorinated biphenyls (PCBs) induce a broad spectrum of toxic effects in various organs including bone. The most susceptible age-groups to the toxic effects of PCBs are foetuses and infants. The aim of the present study was to quantitatively evaluate changes in bone geometry, mineral density and biomechanical properties following perinatal exposure to the PCB mixture, Aroclor 1254 (A1254), and to examine the persistence of observed bone alterations by following the offspring over time. Sprague-Dawley rat offspring were exposed to A1254 from gestational day 1 to post-natal day (PND) 23. Femur and tibia were collected on PNDs 35, 77 and 350 and were analyzed by peripheral quantitative computed tomography and biomechanical testing. At PND35, exposure to A1254 induced short, thin femur and tibia, with reduced mechanical strength of femoral neck. No treatment-related bone changes were detected in offspring at PND77 or PND350. In conclusion, the present investigation suggests that perinatal exposure to A1254 leads to shorter, thinner and weaker bones in juvenile rats at PND35, with these effects being absent at later time-points as exposure is discontinued. The results indicate that the observed bone effects are mainly driven by the dioxin-like congeners, although it cannot exclude the contribution of the non dioxin-like congeners to the exposure outcome.
PLOS ONE | 2014
Matti Viluksela; Päivi Heikkinen; Leo T.M. van der Ven; Filip Rendel; Robert Roos; Javier Esteban; Merja Korkalainen; Sanna Lensu; Hanna M. Miettinen; Kari Savolainen; Satu Sankari; Hellmuth Lilienthal; Annika Adamsson; Jorma Toppari; Maria Herlin; Mikko Finnilä; Juha Tuukkanen; H.A. Leslie; Timo Hamers; Gerd Hamscher; Lauy Al-Anati; Ulla Stenius; Kine-Susann Dervola; Inger-Lise Bogen; Frode Fonnum; Patrik L. Andersson; Dieter Schrenk; Krister Halldin; Helen Håkansson
PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions.
Journal of Toxicology and Environmental Health | 2014
Lubna E. Elabbas; Javier Esteban; Xavier Barber; Gerd Hamscher; Heinz Nau; Wayne J. Bowers; Jamie Nakai; Maria Herlin; Agneta Åkesson; Matti Viluksela; Daniel Borg; Helen Håkansson
Arctic inhabitants are highly exposed to persistent organic pollutants (POP), which may produce adverse health effects. This study characterized alterations in tissue retinoid (vitamin A) levels in rat offspring and their dams following in utero and lactational exposure to the Northern Contaminant Mixture (NCM), a mixture of 27 contaminants including polychlorinated biphenyls (PCB), organochlorine (OC) pesticides, and methylmercury (MeHg), present in maternal blood of the Canadian Arctic Inuit population. Further, effect levels for retinoid system alterations and other endpoints were compared to the Arctic Inuit population exposure and their interrelationships were assessed. Sprague-Dawley rat dams were dosed with NCM from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were obtained from offspring on PND35, PND77, and PND350 and their dams on PND30 for analysis of tissue retinoid levels, hepatic cytochrome P-450 (CYP) enzymes, and serum thyroid hormones. Benchmark doses were established for all endpoints, and a partial least-squares regression analysis was performed for NCM treatment, hepatic retinoid levels, CYP enzyme induction, and thyroid hormone levels, as well as body and liver weights. Hepatic retinoid levels were sensitive endpoints, with the most pronounced effects at PND35 though still apparent at PND350. The effects on tissue retinoid levels and changes in CYP enzyme activities, body and liver weights, and thyroid hormone levels were associated and likely driven by dioxin-like compounds in the mixture. Low margins of exposure were observed for all retinoid endpoints at PND35. These findings are important for health risk assessment of Canadian Arctic populations and further support the use of retinoid system analyses in testing of endocrine-system-modulating compounds.
Toxicology in Vitro | 2015
Maria Herlin; Mattias Öberg; Joakim Ringblom; Bertrand Joseph; Merja Korkalainen; Matti Viluksela; Rachel A. Heimeier; Helen Håkansson
The polychlorinated biphenyl (PCB) mixture Aroclor 1254 alters bone tissue properties. However, the mechanisms responsible for the observed effects have not yet been clarified. This study compared the effect of Aroclor 1254 on the expression of osteoblast differentiation markers in MC3T3-E1 cells with the corresponding effect of the dioxin reference compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and two PCB congeners belonging to the category of non-dioxin-like PCBs. The aim of the study was to quantify the relative influence of dioxin-like and non-dioxin-like PCB-components on osteoblast differentiation. Expression of marker genes for AhR activity and osteoblast differentiation were analyzed, and relative potency (REP) values were derived from Benchmark concentration-effect curves. Expression of alkaline phosphatase and osteocalcin were decreased by both Aroclor 1254 and TCDD exposure, while the PCB-congeners PCB19 and PCB52 slightly induced the expression. The relative potency of Aroclor 1254 for inhibitory effects on osteoblast differentiation marker genes was within the expected range as estimated from the chemical composition of Aroclor 1254. These results are consistent with previously observed bone modulations following in vivo exposure to Aroclor 1254 and TCDD, and demonstrate that the inhibitory effects of Aroclor 1254 on osteoblast differentiation by the dioxin-like constituents are over-riding the contribution of non-dioxin-like PCBs.
Toxicology Letters | 2014
Javier Esteban; Lubna E. Elabbas; Daniel Borg; Maria Herlin; Agneta Åkesson; Xavier Barber; Gerd Hamscher; Heinz Nau; Wayne J. Bowers; Jamie Nakai; Matti Viluksela; Helen Håkansson
Polychlorinated biphenyls (PCBs) induce a broad spectrum of biochemical and toxic effects in mammals including alterations of the vital retinoid (vitamin A) system. The aim of this study was to characterize alterations of tissue retinoid levels in rat offspring and their dams following gestational and lactational exposure to the PCB mixture Aroclor 1254 (A1254) and to assess the interrelationship of these changes with other established sensitive biochemical and toxicological endpoints. Sprague-Dawley rat dams were exposed orally to 0 or 15 mg/kg body weight/day of A1254 from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were collected from the offspring on PNDs 35, 77 and 350. Tissue and serum retinoid levels, hepatic cytochrome P450 (CYP) enzymes and serum thyroid hormones were analyzed. A multivariate regression between A1254 treatment, hepatic retinoid levels, hepatic CYP enzymes activities, thyroid hormone levels and body/liver weights was performed using an orthogonal partial least-squares (PLS) analysis. The contribution of dioxin-like (DL) components of A1254 to the observed effects was also estimated using the toxic equivalency (TEQ) concept. In both male and female offspring short-term alterations in tissue retinoid levels occurred at PND35, i.e. decreased levels of hepatic retinol and retinoic acid (RA) metabolite 9-cis-4-oxo-13,14-dihydro-RA with concurrent increases in hepatic and renal all-trans-RA levels. Long-term changes consisted of decreased hepatic retinyl palmitate and increased renal retinol levels that were apparent until PND350. Retinoid system alterations were associated with altered CYP enzyme activities and serum thyroid hormone levels as well as body and liver weights in both offspring and dams. The estimated DL activity was within an order of magnitude of the theoretical TEQ for different endpoints, indicating significant involvement of DL congeners in the observed effects. This study shows that tissue retinoid levels are affected both short- and long-term by developmental A1254 exposure and are associated with alterations of other established endpoints of toxicological concern.
Journal of Toxicology and Environmental Health | 2011
Lubna E. Elabbas; Mikko Finnilä; Maria Herlin; Natalia Stern; Christina Trossvik; Wayne J. Bowers; Jamie Nakai; Juha Tuukkanen; Rachel A. Heimeier; Agneta Åkesson; Helen Håkansson
Arctic inhabitants consume large proportions of fish and marine mammals, and are therefore continuously exposed to levels of environmental toxicants, which may produce adverse health effects. Fetuses and newborns are the most vulnerable groups. The aim of this study was to evaluate changes in bone geometry, mineral density, and biomechanical properties during development following perinatal exposure to a mixture of environmental contaminants corresponding to maternal blood levels in Canadian Arctic human populations. Sprague-Dawley rat dams were dosed with a Northern Contaminant Mixture (NCM) from gestational day 1 to postnatal day (PND) 23. NCM contains 27 contaminants comprising polychlorinated biphenyls, organochlorine pesticides, and methylmercury. Femurs were collected on PND 35, 77 and 350, and diaphysis was analyzed by peripheral quantitative computed tomography and three-point bending test, while femoral neck was assessed in an axial loading experiment. Dose-response modeling was performed to establish the benchmark dose (BMD) for the analyzed bone parameters. Exposure to the high dose of NMC resulted in short and thin femur with reduced mechanical strength in offspring at PND35. BMD of femur length, cortical area, and stiffness were 3.2, 1.6, and 0.8 mg/kg bw/d, respectively. At PND77 femur was still thin, but at PND350 no treatment-related bone differences were detected. This study provides new insights on environmental contaminants present in the maternal blood of Canadian Arctic populations, showing that perinatal exposure induces bone alterations in the young offspring. These findings could be significant from a health risk assessment point of view.