María Huete-Ortega
University of Vigo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Huete-Ortega.
Ecology Letters | 2013
Emilio Marañón; Pedro Cermeño; Daffne C. López-Sandoval; Tamara Rodríguez-Ramos; Cristina Sobrino; María Huete-Ortega; José María Blanco; Jaime Rodríguez
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μ(max) ) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 10(6) μm(3) in cell volume (V(cell) ), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μ(max) and carbon-specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (V(maxN) ) scales isometrically with V(cell) , whereas nitrogen minimum quota scales as V(cell) (0.84) . Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume-specific V(maxN) compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon-independent, size-related constraints in nutrient uptake, requirement and assimilation.
Progress in Oceanography | 2012
María Huete-Ortega; Pedro Cermeño; Alejandra Calvo-Díaz; Emilio Marañón
The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03–1.32), negating the idea that Kleibers law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of −1.15 (range: −1.29 to −0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems.
PLOS ONE | 2014
Emilio Marañón; Pedro Cermeño; María Huete-Ortega; Daffne C. López-Sandoval; Beatriz Mouriño-Carballido; Tamara Rodríguez-Ramos
The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated.
Global Biogeochemical Cycles | 2015
Paulina Pinedo-Gonzalez; A. Joshua West; Antonio Tovar-Sánchez; Carlos M. Duarte; Emilio Marañón; Pedro Cermeño; Natalia González; Cristina Sobrino; María Huete-Ortega; Ana Belén Méndez Fernández; Daffne C. López-Sandoval; Montserrat Vidal; Dolors Blasco; Marta Estrada; Sergio A. Sañudo-Wilhelmy
The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.
PLOS ONE | 2017
Jiang-Shiou Hwang; Maria Debora Iglesias-Rodriguez; Bethan M. Jones; Sonia Blanco-Ameijeiras; Mervyn Greaves; María Huete-Ortega; Mario Lebrato
Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally ‘fertilized’ by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99–8.08; CO2 = 373–485 p.p.m; 1.5–12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14–17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
Limnology and Oceanography | 2010
Emilio Marañén; Ana Belén Méndez Fernández; Beatriz Mouriño-Carballido; Sandra Martínez-García; Eva Teira; Pedro Cermeño; Paloma Chouciño; María Huete-Ortega; Emilio Fernández; Alejandra Calvo-Díaz; Xosé Anxelu G. Morán; Antonio Bode; Enrique Moreno-Ostos; Marta M. Varela; Matthew D. Patey; Eric P. Achterberg
Journal of Plankton Research | 2010
María Huete-Ortega; Emilio Marañón; Manuel Varela; Antonio Bode
Limnology and Oceanography | 2008
Pedro Cermeño; Emilio Marañín; Derek Harbour; Francisco G. Figueiras; Bibiana G. Crespo; María Huete-Ortega; Manuel Varela; Roger P. Harris
Algal Research-Biomass Biofuels and Bioproducts | 2016
Joseph Longworth; Danying Wu; María Huete-Ortega; Phillip C. Wright; Seetharaman Vaidyanathan
Scientia Marina | 2010
Enrique Moreno-Ostos; Ana Belén Méndez Fernández; María Huete-Ortega; Beatriz Mouriño-Carballido; Alejandra Calvo-Díaz; Xosé Anxelu G. Morán; Emilio Marañón