Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria I. Harrell is active.

Publication


Featured researches published by Maria I. Harrell.


Journal of Experimental Medicine | 2003

Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program

Martin I. Voskuil; Dirk Schnappinger; Kevin C. Visconti; Maria I. Harrell; Gregory Dolganov; David R. Sherman; Gary K. Schoolnik

An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin

David R. Sherman; Martin I. Voskuil; Dirk Schnappinger; Reiling Liao; Maria I. Harrell; Gary K. Schoolnik

Unlike many pathogens that are overtly toxic to their hosts, the primary virulence determinant of Mycobacterium tuberculosis appears to be its ability to persist for years or decades within humans in a clinically latent state. Since early in the 20th century latency has been linked to hypoxic conditions within the host, but the response of M. tuberculosis to a hypoxic signal remains poorly characterized. The M. tuberculosis α-crystallin (acr) gene is powerfully and rapidly induced at reduced oxygen tensions, providing us with a means to identify regulators of the hypoxic response. Using a whole genome microarray, we identified >100 genes whose expression is rapidly altered by defined hypoxic conditions. Numerous genes involved in biosynthesis and aerobic metabolism are repressed, whereas a high proportion of the induced genes have no known function. Among the induced genes is an apparent operon that includes the putative two-component response regulator pair Rv3133c/Rv3132c. When we interrupted expression of this operon by targeted disruption of the upstream gene Rv3134c, the hypoxic regulation of acr was eliminated. These results suggest a possible role for Rv3132c/3133c/3134c in mycobacterial latency.


Molecular Microbiology | 2003

Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis.

Heui Dong Park; Kristi M. Guinn; Maria I. Harrell; Reiling Liao; Martin I. Voskuil; Martin Tompa; Gary K. Schoolnik; David R. Sherman

Unlike many pathogens that are overtly harmful to their hosts, Mycobacterium tuberculosis can persist for years within humans in a clinically latent state. Latency is often linked to hypoxic conditions within the host. Among M. tuberculosis genes induced by hypoxia is a putative transcription factor, Rv3133c/DosR. We performed targeted disruption of this locus followed by transcriptome analysis of wild‐type and mutant bacilli. Nearly all the genes powerfully regulated by hypoxia require Rv3133c/DosR for their induction. Computer analysis identified a consensus motif, a variant of which is located upstream of nearly all M. tuberculosis genes rapidly induced by hypoxia. Further, Rv3133c/DosR binds to the two copies of this motif upstream of the hypoxic response gene alpha‐crystallin. Mutations within the binding sites abolish both Rv3133c/DosR binding as well as hypoxic induction of a downstream reporter gene. Also, mutation experiments with Rv3133c/DosR confirmed sequence‐based predictions that the C‐terminus is responsible for DNA binding and that the aspartate at position 54 is essential for function. Together, these results demonstrate that Rv3133c/DosR is a transcription factor of the two‐component response regulator class, and that it is the primary mediator of a hypoxic signal within M. tuberculosis.


PLOS ONE | 2008

The Enduring Hypoxic Response of Mycobacterium tuberculosis

Tige R. Rustad; Maria I. Harrell; Reiling Liao; David R. Sherman

Background A significant body of evidence accumulated over the last century suggests a link between hypoxic microenvironments within the infected host and the latent phase of tuberculosis. Studies to test this correlation have identified the M. tuberculosis initial hypoxic response, controlled by the two-component response regulator DosR. The initial hypoxic response is completely blocked in a dosR deletion mutant. Methodology/Principal Findings We show here that a dosR deletion mutant enters bacteriostasis in response to in vitro hypoxia with only a relatively mild decrease in viability. In the murine infection model, the phenotype of the mutant was indistinguishable from that of the parent strain. These results suggested that additional genes may be essential for entry into and maintenance of bacteriostasis. Detailed microarray analysis of oxygen starved cultures revealed that DosR regulon induction is transient, with induction of nearly half the genes returning to baseline within 24 hours. In addition, a larger, sustained wave of gene expression follows the DosR-mediated initial hypoxic response. This Enduring Hypoxic Response (EHR) consists of 230 genes significantly induced at four and seven days of hypoxia but not at initial time points. These genes include a surprising number of transcriptional regulators that could control the program of bacteriostasis. We found that the EHR is independent of the DosR-mediated initial hypoxic response, as EHR expression is virtually unaltered in the dosR mutant. Conclusions/Significance Our results suggest a reassessment of the role of DosR and the initial hypoxic response in MTB physiology. Instead of a primary role in survival of hypoxia induced bacteriostasis, DosR may regulate a response that is largely optional in vitro and in mouse infections. Analysis of the EHR should help elucidate the key regulatory factors and enzymatic machinery exploited by M. tuberculosis for long-term bacteriostasis in the face of oxygen deprivation.


Clinical Cancer Research | 2014

Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas

K. Pennington; Tom Walsh; Maria I. Harrell; Ming K. Lee; Christopher Pennil; Mara H. Rendi; Anne M. Thornton; Barbara M. Norquist; Silvia Casadei; Alex S. Nord; Kathy Agnew; Colin C. Pritchard; Sheena Scroggins; Rochelle L. Garcia; Mary Claire King; Elizabeth M. Swisher

Purpose: Hallmarks of germline BRCA1/2-associated ovarian carcinomas include chemosensitivity and improved survival. The therapeutic impact of somatic BRCA1/2 mutations and mutations in other homologous recombination DNA repair genes is uncertain. Experimental Design: Using targeted capture and massively parallel genomic sequencing, we assessed 390 ovarian carcinomas for germline and somatic loss-of-function mutations in 30 genes, including BRCA1, BRCA2, and 11 other genes in the homologous recombination pathway. Results: Thirty-one percent of ovarian carcinomas had a deleterious germline (24%) and/or somatic (9%) mutation in one or more of the 13 homologous recombination genes: BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, MRE11A, NBN, PALB2, RAD51C, and RAD51D. Nonserous ovarian carcinomas had similar rates of homologous recombination mutations to serous carcinomas (28% vs. 31%, P = 0.6), including clear cell, endometrioid, and carcinosarcoma. The presence of germline and somatic homologous recombination mutations was highly predictive of primary platinum sensitivity (P = 0.0002) and improved overall survival (P = 0.0006), with a median overall survival of 66 months in germline homologous recombination mutation carriers, 59 months in cases with a somatic homologous recombination mutation, and 41 months for cases without a homologous recombination mutation. Conclusions: Germline or somatic mutations in homologous recombination genes are present in almost one third of ovarian carcinomas, including both serous and nonserous histologies. Somatic BRCA1/2 mutations and mutations in other homologous recombination genes have a similar positive impact on overall survival and platinum responsiveness as germline BRCA1/2 mutations. The similar rate of homologous recombination mutations in nonserous carcinomas supports their inclusion in PARP inhibitor clinical trials. Clin Cancer Res; 20(3); 764–75. ©2013 AACR.


Lancet Oncology | 2017

Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial

Elizabeth M. Swisher; Kevin K. Lin; Amit M. Oza; Clare L. Scott; Heidi Giordano; James Sun; Gottfried E. Konecny; Robert L. Coleman; Anna V. Tinker; David M. O'Malley; Rebecca Kristeleit; Ling Ma; Katherine M. Bell-McGuinn; James D. Brenton; Janiel M. Cragun; Isabelle Ray-Coquard; Maria I. Harrell; Elaina Mann; Scott H. Kaufmann; Anne Floquet; Alexandra Leary; Thomas Harding; Sandra Goble; L. Maloney; Jeff Isaacson; Andrew R. Allen; Lindsey Rolfe; Roman Yelensky; Mitch Raponi; Iain A. McNeish

BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have activity in ovarian carcinomas with homologous recombination deficiency. Along with BRCA1 and BRCA2 (BRCA) mutations genomic loss of heterozygosity (LOH) might also represent homologous recombination deficiency. In ARIEL2, we assessed the ability of tumour genomic LOH, quantified with a next-generation sequencing assay, to predict response to rucaparib, an oral PARP inhibitor. METHODS ARIEL2 is an international, multicentre, two-part, phase 2, open-label study done at 49 hospitals and cancer centres in Australia, Canada, France, Spain, the UK, and the USA. In ARIEL2 Part 1, patients with recurrent, platinum-sensitive, high-grade ovarian carcinoma were classified into one of three predefined homologous recombination deficiency subgroups on the basis of tumour mutational analysis: BRCA mutant (deleterious germline or somatic), BRCA wild-type and LOH high (LOH high group), or BRCA wild-type and LOH low (LOH low group). We prespecified a cutoff of 14% or more genomic LOH for LOH high. Patients began treatment with oral rucaparib at 600 mg twice per day for continuous 28 day cycles until disease progression or any other reason for discontinuation. The primary endpoint was progression-free survival. All patients treated with at least one dose of rucaparib were included in the safety analyses and all treated patients who were classified were included in the primary endpoint analysis. This trial is registered with ClinicalTrials.gov, number NCT01891344. Enrolment into ARIEL2 Part 1 is complete, although an extension (Part 2) is ongoing. FINDINGS 256 patients were screened and 206 were enrolled between Oct 30, 2013, and Dec 19, 2014. At the data cutoff date (Jan 18, 2016), 204 patients had received rucaparib, with 28 patients remaining in the study. 192 patients could be classified into one of the three predefined homologous recombination deficiency subgroups: BRCA mutant (n=40), LOH high (n=82), or LOH low (n=70). Tumours from 12 patients were established as BRCA wild-type, but could not be classified for LOH, because of insufficient neoplastic nuclei in the sample. The median duration of treatment for the 204 patients was 5·7 months (IQR 2·8-10·1). 24 patients in the BRCA mutant subgroup, 56 patients in the LOH high subgroup, and 59 patients in the LOH low subgroup had disease progression or died. Median progression-free survival after rucaparib treatment was 12·8 months (95% CI 9·0-14·7) in the BRCA mutant subgroup, 5·7 months (5·3-7·6) in the LOH high subgroup, and 5·2 months (3·6-5·5) in the LOH low subgroup. Progression-free survival was significantly longer in the BRCA mutant (hazard ratio 0·27, 95% CI 0·16-0·44, p<0·0001) and LOH high (0·62, 0·42-0·90, p=0·011) subgroups compared with the LOH low subgroup. The most common grade 3 or worse treatment-emergent adverse events were anaemia or decreased haemoglobin (45 [22%] patients), and elevations in alanine aminotransferase or aspartate aminotransferase (25 [12%]). Common serious adverse events included small intestinal obstruction (10 [5%] of 204 patients), malignant neoplasm progression (10 [5%]), and anaemia (nine [4%]). Three patients died during the study (two because of disease progression and one because of sepsis and disease progression). No treatment-related deaths occurred. INTERPRETATION In patients with BRCA mutant or BRCA wild-type and LOH high platinum-sensitive ovarian carcinomas treated with rucaparib, progression-free survival was longer than in patients with BRCA wild-type LOH low carcinomas. Our results suggest that assessment of tumour LOH can be used to identify patients with BRCA wild-type platinum-sensitive ovarian cancers who might benefit from rucaparib. These results extend the potential usefulness of PARP inhibitors in the treatment setting beyond BRCA mutant tumours. FUNDING Clovis Oncology, US Department of Defense Ovarian Cancer Research Program, Stand Up To Cancer-Ovarian Cancer Research Fund Alliance-National Ovarian Cancer Coalition Dream Team Translational Research Grant, and V Foundation Translational Award.


JAMA Oncology | 2016

Inherited Mutations in Women With Ovarian Carcinoma

Barbara M. Norquist; Maria I. Harrell; Mark F. Brady; Tom Walsh; Ming K. Lee; Suleyman Gulsuner; Sarah S. Bernards; Silvia Casadei; Qian Yi; Robert A. Burger; John K. C. Chan; Susan A. Davidson; Robert S. Mannel; Paul DiSilvestro; Heather A. Lankes; Nilsa C. Ramirez; Mary Claire King; Elizabeth M. Swisher; Michael J. Birrer

IMPORTANCE Germline mutations in BRCA1 and BRCA2 are relatively common in women with ovarian, fallopian tube, and peritoneal carcinoma (OC) causing a greatly increased lifetime risk of these cancers, but the frequency and relevance of inherited mutations in other genes is less well characterized. OBJECTIVE To determine the frequency and importance of germline mutations in cancer-associated genes in OC. DESIGN, SETTING, AND PARTICIPANTS A study population of 1915 woman with OC and available germline DNA were identified from the University of Washington (UW) gynecologic tissue bank (n = 570) and from Gynecologic Oncology Group (GOG) phase III clinical trials 218 (n = 788) and 262 (n = 557). Patients were enrolled at diagnosis and were not selected for age or family history. Germline DNA was sequenced from women with OC using a targeted capture and multiplex sequencing assay. MAIN OUTCOMES AND MEASURES Mutation frequencies in OC were compared with the National Heart, Lung, and Blood Institute GO Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC). Clinical characteristics and survival were assessed by mutation status. RESULTS Overall, the median (range) age at diagnosis was 60 (28-91) years in patients recruited from UW and 61 (23-87) years in patients recruited from the GOG trials. A higher number of black women were recruited from the GOG trials (4.3% vs 1.4%; P = .009); but in patients recruited from UW, there was a higher proportion of fallopian tube carcinomas (13.3% vs 5.7%; P < .001); stage I and II disease (14.6% vs 0% [GOG trials were restricted to advanced-stage cancer]); and nonserous carcinomas (29.9% vs 13.1%, P < .001). Of 1915 patients, 280 (15%) had mutations in BRCA1 (n = 182), or BRCA2 (n = 98), and 8 (0.4%) had mutations in DNA mismatch repair genes. Mutations in BRIP1 (n = 26), RAD51C (n = 11), RAD51D (n = 11), PALB2 (n = 12), and BARD1 (n = 4) were significantly more common in patients with OC than in the ESP or ExAC, present in 3.3%. Race, histologic subtype, and disease site were not predictive of mutation frequency. Patients with a BRCA2 mutation from the GOG trials had longer progression-free survival (hazard ratio [HR], 0.60; 95% CI, 0.45-0.79; P < .001) and overall survival (HR, 0.39; 95% CI, 0.25-0.60; P < .001) compared with those without mutations. CONCLUSIONS AND RELEVANCE Of 1915 patients with OC, 347 (18%) carried pathogenic germline mutations in genes associated with OC risk. PALB2 and BARD1 are suspected OC genes and together with established OC genes (BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH2, MLH1, PMS2, and MSH6) bring the total number of genes suspected to cause hereditary OC to 11.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance

Neil Johnson; Shawn F. Johnson; Wei Yao; Yu Chen Li; Young Eun Choi; Andrea J. Bernhardy; Yifan Wang; Marzia Capelletti; Kristopher A. Sarosiek; Lisa A. Moreau; Dipanjan Chowdhury; Anneka Wickramanayake; Maria I. Harrell; Joyce Liu; Alan D. D'Andrea; Alexander Miron; Elizabeth M. Swisher; Geoffrey I. Shapiro

Significance Poly(ADP-ribose) polymerase (PARP) inhibitors have produced responses in homologous recombination (HR) repair-deficient cancers, such as those with a mutated breast cancer 1, early onset (BRCA1) gene. We have delineated a two-event mechanism of acquired resistance by using a BRCA1 BRCA C-terminal (BRCT) domain-mutated breast cancer cell line, involving heat shock protein (HSP)90-mediated stabilization of the mutant protein coupled with tumor protein p53 binding protein 1 (TP53BP1) gene mutation, which together restore DNA end resection and RAD51 filament formation, critical steps in HR. Similar events may occur in primary BRCA1-mutated ovarian cancers as cells develop resistance to platinum. The data demonstrate that, even though BRCA1 BRCT domain mutant proteins cannot promote DNA end resection, they retain partial function and can contribute to RAD51 loading and HR. Finally, HSP90 inhibition may prove useful for resensitizing resistant BRCA1-mutant cancer cells to drug treatment. Breast Cancer Type 1 Susceptibility Protein (BRCA1)-deficient cells have compromised DNA repair and are sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. Despite initial responses, the development of resistance limits clinical efficacy. Mutations in the BRCA C-terminal (BRCT) domain of BRCA1 frequently create protein products unable to fold that are subject to protease-mediated degradation. Here, we show HSP90-mediated stabilization of a BRCT domain mutant BRCA1 protein under PARP inhibitor selection pressure. The stabilized mutant BRCA1 protein interacted with PALB2-BRCA2-RAD51, was essential for RAD51 focus formation, and conferred PARP inhibitor as well as cisplatin resistance. Treatment of resistant cells with the HSP90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin reduced mutant BRCA1 protein levels and restored their sensitivity to PARP inhibition. Resistant cells also acquired a TP53BP1 mutation that facilitated DNA end resection in the absence of a BRCA1 protein capable of binding CtIP. Finally, concomitant increased mutant BRCA1 and decreased 53BP1 protein expression occur in clinical samples of BRCA1-mutated recurrent ovarian carcinomas that have developed resistance to platinum. These results provide evidence for a two-event mechanism by which BRCA1-mutant tumors acquire anticancer therapy resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues

Jeffrey D. Krimmel; Michael W. Schmitt; Maria I. Harrell; Kathy Agnew; Scott R. Kennedy; Mary J. Emond; Lawrence A. Loeb; Elizabeth M. Swisher; Rosa Ana Risques

Significance The detection of rare tumor-specific somatic mutations in “liquid biopsies” is limited by the high error rate of DNA sequencing technologies. By sequencing peritoneal fluid from women with high-grade serous ovarian cancer, we demonstrate that duplex sequencing, currently the most accurate sequencing technology, is able to detect one cancer cell among tens of thousands of normal cells. This unprecedented sensitivity also revealed a striking prevalence of extremely low frequency TP53 mutations in normal tissue. Women with and without cancer harbored TP53 mutations of pathogenic consequences, both in peritoneal fluid and peripheral blood. These mutations likely represent a premalignant mutational background that accumulates in cancer and aging. Current sequencing methods are error-prone, which precludes the identification of low frequency mutations for early cancer detection. Duplex sequencing is a sequencing technology that decreases errors by scoring mutations present only in both strands of DNA. Our aim was to determine whether duplex sequencing could detect extremely rare cancer cells present in peritoneal fluid from women with high-grade serous ovarian carcinomas (HGSOCs). These aggressive cancers are typically diagnosed at a late stage and are characterized by TP53 mutations and peritoneal dissemination. We used duplex sequencing to analyze TP53 mutations in 17 peritoneal fluid samples from women with HGSOC and 20 from women without cancer. The tumor TP53 mutation was detected in 94% (16/17) of peritoneal fluid samples from women with HGSOC (frequency as low as 1 mutant per 24,736 normal genomes). Additionally, we detected extremely low frequency TP53 mutations (median mutant fraction 1/13,139) in peritoneal fluid from nearly all patients with and without cancer (35/37). These mutations were mostly deleterious, clustered in hotspots, increased with age, and were more abundant in women with cancer than in controls. The total burden of TP53 mutations in peritoneal fluid distinguished cancers from controls with 82% sensitivity (14/17) and 90% specificity (18/20). Age-associated, low frequency TP53 mutations were also found in 100% of peripheral blood samples from 15 women with and without ovarian cancer (none with hematologic disorder). Our results demonstrate the ability of duplex sequencing to detect rare cancer cells and provide evidence of widespread, low frequency, age-associated somatic TP53 mutation in noncancerous tissue.


Cancer Discovery | 2017

Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma

Olga Kondrashova; Minh Nguyen; Kristy Shield-Artin; Anna V. Tinker; Nelson N.H. Teng; Maria I. Harrell; Michael J. Kuiper; Gwo-Yaw Ho; Holly Barker; Maria Jasin; Rohit Prakash; Elizabeth M. Kass; Meghan R. Sullivan; Gregory J. Brunette; Kara A. Bernstein; Robert L. Coleman; Anne Floquet; Michael Friedlander; Ganessan Kichenadasse; David M. O'Malley; Amit M. Oza; James Sun; Liliane Robillard; L. Maloney; David Bowtell; Heidi Giordano; Matthew J. Wakefield; Scott H. Kaufmann; Andrew Simmons; Thomas Harding

High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51CIn vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984-98. ©2017 AACR.See related commentary by Domchek, p. 937See related article by Quigley et al., p. 999See related article by Goodall et al., p. 1006This article is highlighted in the In This Issue feature, p. 920.

Collaboration


Dive into the Maria I. Harrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Agnew

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ming K. Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Pennington

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Walsh

University of Washington Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge