Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Inés Pigozzi is active.

Publication


Featured researches published by María Inés Pigozzi.


Cytogenetic and Genome Research | 2009

Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae).

María José Bressa; A.G. Papeschi; Magda Vítková; Svatava Kubickova; Iva Fuková; María Inés Pigozzi; František Marec

The neo-X and neo-Y sex chromosomes of Dysdercus albofasciatus represent a unique model for the study of early stages of sex chromosome evolution since they retained the ability to pair and recombine, in contrast to sex chromosomes in most Heteroptera. Here we examined structure, molecular differentiation, and meiotic behaviour of the D. albofasciatus neo-sex chromosomes. Two related species with the ancestral X0 system, D. chaquensis and D. ruficollis, were used for a comparison. In D. albofasciatus, 2 nucleolar organizer regions (NORs) were identified on the neo-X chromosome using fluorescence in situ hybridization (FISH) with an rDNA probe, whereas a single NOR was found on an autosomal pair in the other 2 species. Genomic in situ hybridization (GISH) differentiated a part of the original X in the neo-X chromosome but not the neo-Y chromosome. The same segment of the neo-X chromosome was identified by Zoo-FISH with a chromosome painting probe derived from the X chromosome of D. ruficollis, indicating that this part is conserved between the species. Immunostaining against the cohesin subunit SMC3 revealed that only terminal regions of the D. albofasciatus neo-Xneo-Y bivalent pair and form a synaptonemal complex, which is in keeping with the occurrence of terminal chiasmata, whereas the interstitial region forms a large loop indicating the absence of homology. These results support the hypothesis that the neo-X chromosome evolved by insertion of the original X chromosome into 1 NOR-bearing autosome in an ancestor carrying the X0 system. As a consequence, the homologue of this NOR-autosome became the neo-Y chromosome. A subsequent inversion followed by transposition of the NOR located on the neo-Y onto the neo-X chromosome resulted in the present neo-sex chromosome system in D. albofasciatus.


Chromosoma | 2005

The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males

María Inés Pigozzi; Alberto J. Solari

In the zebra finch (Taeniopygia guttata), there is a germ-line-restricted chromosome regularly present in males and females. A reexamination of male and female meiosis in the zebra finch showed that this element forms a euchromatic bivalent in oocytes, but it is always a single, heterochromatic element in spermatocytes. Immunostaining with anti-MLH1 showed that the bivalent in oocytes has two or three foci with a localized pattern, indicating the regular occurrence of recombination. In male meiosis, the single restricted chromosome forms an axis that contains the cohesin subunit SMC3, and the associated chromatin is densely packed until late pachytene. Electron microscopy of thin-sectioned seminiferous tubules shows that the restricted chromosome is eliminated in postmeiotic stages in the form of packed chromatin inside a micronucleus, visible in the cytoplasm of young spermatids. The selective condensation of the restricted chromosome during early meiotic prophase in males is interpreted as a strategy to avoid the triggering of asynaptic checkpoints, but this condensation is reversed prior to the final condensation that leads to its (ulterior) elimination. Recombination during female meiosis may prevent the genetic attrition of the restricted chromosome and, along with the elimination in male germ cells, ensures its regular transmission through females.


Chromosoma | 2010

Heterochromatin and histone modifications in the germline-restricted chromosome of the zebra finch undergoing elimination during spermatogenesis

Clara Goday; María Inés Pigozzi

In the zebra finch (Taeniopygia guttata) a germline-restricted chromosome (GRC) is regularly present in males and females. While the GRC is euchromatic in oocytes, in spermatocytes this chromosome is cytologically seen as entirely heterochromatic and presumably inactive. At the end of male meiosis, the GRC is eliminated from the nucleus. By immunofluorescence on microspreads, we investigated HP1 proteins and histone modifications throughout male meiotic prophase, as well as in young spermatid stages after the GRC elimination. We found that in prophase spermatocytes the GRC chromatin differs from that of the regular chromosome complement. The GRC is highly enriched in HP1β and exhibits high levels of di- and tri-methylated histone H3 at lysine 9 and tri- and di-methylated histone H4 at lysine 20. The GRC does not exhibit neither detectable levels of di- and tri-methylated histone H3 at lysine 4 nor acetylated histone H4 at lysine 5 and 8. The results prove the heterochromatic organization of the GRC in male germline and strongly suggest its transcriptional inactive state during male prophase. Following elimination, in young spermatids the GRC lacks HP1β signals but maintains high levels of methylated histone H3 at lysine 9 and methylated histone H4 at lysine 20. The release of HP1 from the GRC with respect to its elimination is discussed.


Chromosoma | 2009

Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch

Yuichiro Itoh; Kathy Kampf; María Inés Pigozzi; Arthur P. Arnold

The zebra finch (Taeniopygia guttata) germline-restricted chromosome (GRC) is the largest chromosome and has a unique system of transmission in germ cells. In the male, the GRC exists as a single heterochromatic chromosome in the germline and is eliminated from nuclei in late spermatogenesis. In the female, the GRC is bivalent and euchromatic and experiences recombination. These characteristics suggest a female-specific or female-beneficial function of the GRC. To shed light on the function of GRC, we cloned a portion of the GRC using random amplified polymorphic DNA–polymerase chain reaction and analyzed it using molecular genetic and cytogenetic methods. The GRC clone hybridized strongly to testis but not blood DNA in genomic Southern blots. In fluorescent in situ hybridization analysis on meiotic chromosomes from synaptonemal complex spreads, the probe showed hybridization across a large area of the GRC, suggesting that it contains repetitive sequences. We isolated a sequence homologous to the GRC from zebra finch chromosome 3 and a region of chicken chromosome 1 that is homologous to zebra finch chromosome 3; the phylogenetic analysis of these three sequences suggested that the GRC sequence and the zebra finch chromosome 3 sequence are most closely related. Thus, the GRC sequences likely originated from autosomal DNA and have evolved after the galliform–passeriform split. The present study provides a foundation for further study of the intriguing GRC.


Chromosoma | 2014

Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch

Lucía del Priore; María Inés Pigozzi

We report here that a germline-restricted chromosome (GRC) is regularly present in males and females of the Bengalese finch (Lonchura domestica). While the GRC is euchromatic in oocytes, in spermatocytes this chromosome is cytologically seen as entirely heterochromatic and presumably inactive. The GRC is observed in the cytoplasm of secondary spermatocytes, indicating that its elimination from the nucleus occurs during the first meiotic division. By immunofluorescence on microspreads, we investigated the presence of histone H3 modifications throughout male meiosis, as well as in postmeiotic stages. We found that the GRC is highly enriched in di- and trimethylated histone H3 at lysine 9 during prophase I, in agreement with the presumed inactive state of this chromosome. At metaphase I, dimethylated histone H3 is no longer detectable on the GRC and its chromatin is more faintly stained with DAPI. The condensed GRC is underphosphorylated at serine 10 compared to the regular chromosomes during metaphase I, being phosphorylated later at this site after the first meiotic division. From these results, we proposed that trimethylation of histone H3 at lysine 9 on the GRC chromatin increases during metaphase I. This hypermethylated state at lysine 9 may preclude the phosphorylation of the adjacent serine 10 residue, providing an example of cross-talk of histone H3 modifications as described in experimental systems. The differential underphosphorylation of the GRC chromatin before elimination is interpreted as a cytologically detectable byproduct of deficient activity of Aurora B kinase, which is responsible for the phosphorylation of H3 at serine 10 during mitosis and meiosis.


Chromosome Research | 2008

Relationship between physical and genetic distances along the zebra finch Z chromosome

María Inés Pigozzi

Nine bacterial artificial chromosomes containing genes linked to the Z chromosome of the zebra finch (Taeniopygia guttata) were localized using FISH on synaptonemal complex spreads. Their positions were correlated with those previously reported on the mitotic Z chromosome, showing a linear relationship between positions along the mitotic chromosome and its synaptonemal complex. Distances in cM between the genes were calculated using a cytological map of the crossing-over based on the distribution of MLH1 foci along the ZZ synaptonemal complex (MLH1-cM map). It is shown that physical and genetic distances lack a linear relationship along most of the chromosome length, due to clustering of crossover events around the telomeres. This relationship departs strongly from that observed in the chicken Z chromosome and reflects the existence of different recombination rates and patterns among birds in spite of wide genomic conservation.


Chromosome Research | 2005

Chromosomal localization of the telomeric (TTAGGG)n sequence in four species of Armadillo (Dasypodidae) from Argentina: an approach to explaining karyotype evolution in the Xenarthra

M. S. Lizarralde; A. D. Bolzán; S. Poljak; María Inés Pigozzi; J. Bustos; Maria Susana Merani

The distribution of the vertebrate telomeric sequence (TTAGGG)n in four species of armadillos (Dasypodidae, Xenarthra), i.e. Chaetophractus villosus (2n = 60), Chaetophractus vellerosus (2n = 62), Dasypus hybridus (2n = 64) and Zaedyus pichiy (2n = 62) was examined by FISH with a peptide nucleic acid (PNA) probe. Besides the expected telomeric hybridization, interstitial (centromeric) locations of the (TTAGGG)n sequence were observed in one chromosome pair of Chaetophractus vellerosus and Zaedyus pichiy, suggesting chromosome fusion of ancestral chromosomes occurring during the evolution of Dasypodidae. In addition, all the species analysed showed one to four apparently telocentric chromosomes, exhibiting only two telomeric signals. However, the immunodetection study of kinetochore proteins on synaptonemal complex spreads from C. villosus showed that the apparently telocentric chromosomes have a tiny short arm that can be resolved only in the more elongated pachytene bivalents. This finding suggests that none of the species of armadillos possess true telocentric chromosomes. Our present results support a reduction in the diploid number by fusion of acrocentrics with loss of chromosome material as a tendency in Dasypodidae.


Cytogenetic and Genome Research | 2012

Chromosomal axis formation and meiotic progression in chicken oocytes: a quantitative analysis.

L. del Priore; María Inés Pigozzi

The assembly and disassembly of the synaptonemal complexes (SCs) correlate with the progression of meiotic prophase I. Using immunostaining of the cohesin component SMC3, which is present in the axial elements of the SC, we characterized the synaptic process in chicken oocytes and quantified the frequency of the different prophase stages at hatching and at 3 different ages after hatching. The analysis provides detailed quantitative data regarding the meiotic stages in the chicken ovary showing that the maximum amount of pachytene oocytes is found around hatching and that oocytes reach the diplotene stage 5 days after entering into meiosis. We confirmed the asynchrony of the meiotic development in the female chicken gonad showing that the ovary has a composite population of cells at different stages from day 17 before hatching and for several days after hatching. The significance of these results is discussed in relationship to functional experimental procedures that involve avian oocytes.


Cytogenetic and Genome Research | 2015

Heterologous Synapsis and Crossover Suppression in Heterozygotes for a Pericentric Inversion in the Zebra Finch

Lucía del Priore; María Inés Pigozzi

In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility.


Cytogenetic and Genome Research | 2016

The Chromosomes of Birds during Meiosis.

María Inés Pigozzi

The cytological analysis of meiotic chromosomes is an exceptional tool to approach complex processes such as synapsis and recombination during the division. Chromosome studies of meiosis have been especially valuable in birds, where naturally occurring mutants or experimental knock-out animals are not available to fully investigate the basic mechanisms of major meiotic events. This review highlights the main contributions of synaptonemal complex and lampbrush chromosome research to the current knowledge of avian meiosis, with special emphasis on the organization of chromosomes during prophase I, the impact of chromosome rearrangements during meiosis, and distinctive features of the ZW pair.

Collaboration


Dive into the María Inés Pigozzi's collaboration.

Top Co-Authors

Avatar

Lucía del Priore

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Alberto J. Solari

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

A.G. Papeschi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

J. Bustos

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

L. del Priore

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

M. S. Lizarralde

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mónica I. Rahn

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge