Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Isabel Loza is active.

Publication


Featured researches published by María Isabel Loza.


International Journal of Pharmaceutics | 2009

Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma

Felipe A. Oyarzun-Ampuero; José Antonio Fraiz Brea; María Isabel Loza; Dolores Torres; María J. Alonso

The purpose of this study was to produce mucoadhesive nanocarriers made from chitosan (CS) and hyaluronic acid (HA), and containing the macromolecular drug heparin, suitable for pulmonary delivery. For the first time, this drug was tested in ex vivo experiments performed in mast cells, in order to investigate the potential of the heparin-loaded nanocarriers in antiasthmatic therapy. CS and mixtures of HA with unfractionated or low-molecular-weight heparin (UFH and LMWH, respectively) were combined to form nanoparticles by the ionotropic gelation technique. The resulting nanoparticles loaded with UFH were between 162 and 217 nm in size, and those prepared with LMWH were 152 nm. The zeta potential of the nanoparticle formulations ranged from +28.1 to +34.6 mV, and in selected nanosystems both types of heparin were associated with a high degree of efficiency, which was approximately 70%. The nanosystems were stable in phosphate buffered saline (PBS), pH 7.4, for at least 24h, and released 10.8% of UFH and 79.7% of LMWH within 12h of incubation. Confocal microscopy experiments showed that fluorescent heparin-loaded CS-HA nanoparticles were effectively internalized by rat mast cells. Ex vivo experiments aimed at evaluating the capacity of heparin to prevent histamine release in rat mast cells indicated that the free or encapsulated drug exhibited the same dose-response behaviour.


Journal of Medicinal Chemistry | 2011

Pyrimidine Derivatives as Potent and Selective A3 Adenosine Receptor Antagonists

Vicente Yaziji; David Rodríguez; Hugo Gutiérrez-de-Terán; Alberto Coelho; Olga Caamaño; Xerardo García-Mera; José Antonio Fraiz Brea; María Isabel Loza; María Isabel Cadavid; Eddy Sotelo

Two regioisomeric series of diaryl 2- or 4-amidopyrimidines have been synthesized and their adenosine receptor affinities were determined in radioligand binding assays at the four human adenosine receptors (hARs). Some of the ligands prepared herein exhibit remarkable affinities (K(i) < 10 nm) and, most noticeably, the absence of activity at the A(1), A(2A), and A(2B) receptors. The structural determinants that support the affinity and selectivity profiles of the series were highlighted through an integrated computational approach, combining a 3D-QSAR model built on the second generation of GRid INdependent Descriptors (GRIND2) with a novel homology model of the hA(3) receptor. The robustness of the computational model was subsequently evaluated by the design of new derivatives exploring the alkyl substituent of the exocyclic amide group. The synthesis and evaluation of the novel compounds validated the predictive power of the model, exhibiting excellent agreement between predicted and experimental activities.


Molecular Pharmacology | 2009

Evidence for distinct antagonist-revealed functional states of 5-hydroxytryptamine2A receptor homodimers

José Antonio Fraiz Brea; Marián Castro; Jesús Giraldo; Juan F. López-Giménez; Juan Fernando Padín; Fátima Quintián; María Isabel Cadavid; Maria Teresa Vilaró; Guadalupe Mengod; Kelly A. Berg; William P. Clarke; Jean Pierre Vilardaga; Graeme Milligan; María Isabel Loza

The serotonin (5-hydroxytryptamine; 5-HT) 2A receptor is a cell surface class A G protein-coupled receptor that regulates a multitude of physiological functions of the body and is a target for antipsychotic drugs. Here we found by means of fluorescence resonance energy transfer and immunoprecipitation studies that the 5-HT2A-receptor homodimerized in live cells, which we linked with its antagonist-dependent fingerprint in both binding and receptor signaling. Some antagonists, like the atypical antipsychotics clozapine and risperidone, differentiate themselves from others, like the typical antipsychotic haloperidol, antagonizing these 5-HT2A receptor-mediated functions in a pathway-specific manner, explained here by a new model of multiple active interconvertible conformations at dimeric receptors.


Bioorganic & Medicinal Chemistry | 2010

In silico directed chemical probing of the adenosine receptor family

Filipe Areias; José Antonio Fraiz Brea; Elisabet Gregori-Puigjané; Magdi E. A. Zaki; M. Alice Carvalho; Eduardo Domínguez; Hugo Gutiérrez-de-Terán; M. Fernanda R. P. Proença; María Isabel Loza; Jordi Mestres

One of the grand challenges in chemical biology is identifying a small-molecule modulator for each individual function of all human proteins. Instead of targeting one protein at a time, an efficient approach to address this challenge is to target entire protein families by taking advantage of the relatively high levels of chemical promiscuity observed within certain boundaries of sequence phylogeny. We recently developed a computational approach to identifying the potential protein targets of compounds based on their similarity to known bioactive molecules for almost 700 targets. Here, we describe the direct identification of novel antagonists for all four adenosine receptor subtypes by applying our virtual profiling approach to a unique synthesis-driven chemical collection composed of 482 biologically-orphan molecules. These results illustrate the potential role of in silico target profiling to guide efficiently screening campaigns directed to discover new chemical probes for all members of a protein family.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis, binding affinity and SAR of new benzolactam derivatives as dopamine D3 receptor ligands

Raquel Ortega; Enrique Raviña; Christian F. Masaguer; Filipe Areias; José Antonio Fraiz Brea; María Isabel Loza; Laura López; Jana Selent; Manuel Pastor; Ferran Sanz

A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for their affinities at the dopamine D(1), D(2), and D(3) receptors. Some of these compounds showed high D(2) and/or D(3) affinity and selectivity over the D(1) receptor. The SAR study of these compounds revealed structural characteristics that decisively influenced their D(2) and D(3) affinities. Structural models of the complexes between some of the most representative compounds of this series and the D(2) and D(3) receptors were obtained with the aim of rationalizing the observed experimental results. Moreover, selected compounds showed moderate binding affinity on 5-HT(2A) which could contribute to reducing the occurrence of extrapyramidal side effects as potential antipsychotics.


Journal of Medicinal Chemistry | 2012

Effect of Phosphodiesterase 7 (PDE7) Inhibitors in Experimental Autoimmune Encephalomyelitis Mice. Discovery of a New Chemically Diverse Family of Compounds

Miriam Redondo; José Antonio Fraiz Brea; Daniel I. Perez; Ignacio Soteras; Cristina Val; Concepción Pérez; José A. Morales-García; Sandra Alonso-Gil; Nuria Paul-Fernández; Rocío Martín-Álvarez; María Isabel Cadavid; María Isabel Loza; Ana Perez-Castillo; Guadalupe Mengod; Nuria E. Campillo; Ana Martinez; Carmen Gil

Phosphodiesterase (PDE) 7 is involved in proinflammatory processes, being widely expressed both on lymphocytes and on certain brain regions. Specific inhibitors of PDE7 have been recently reported as potential new drugs for the treatment of neurological disorders because of their ability to increase intracellular levels of cAMP and thus to modulate the inflammatory process, as a neuroprotective well-established strategy. Multiple sclerosis is an unmet disease in which pathologies on the immune system, T-cells, and specific neural cells are involved simultaneously. Therefore, PDE7 inhibitors able to interfere with all these targets may represent an innovative therapy for this pathology. Here, we report a new chemically diverse family of heterocyclic PDE7 inhibitors, discovered and optimized by using molecular modeling studies, able to increase cAMP levels in cells, decrease inflammatory activation on primary neural cultures, and also attenuate the clinical symptoms in the experimental autoimmune encephalomyelitis (EAE) mouse model. These results led us to propose the use of PDE7 inhibitors as innovative therapeutic agents for the treatment of multiple sclerosis.


Bioorganic & Medicinal Chemistry | 2008

1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent A2B adenosine receptor antagonists: Design, synthesis, structure-affinity and structure-selectivity relationships

Angela Stefanachi; Orazio Nicolotti; Francesco Leonetti; Saverio Cellamare; Francesco Campagna; María Isabel Loza; José Antonio Fraiz Brea; Fernando Mazza; E. Gavuzzo; Angelo Carotti

A number of 1,3-dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines were prepared and evaluated as ligands of recombinant human adenosine receptors (hARs). Several 1,3-dipropyl derivatives endowed with nanomolar binding affinity at hA(2B) receptors, but poor selectivity over hA(2A), hA(1) and hA(3) AR subtypes were identified. A comparison with the corresponding 7-OH- and 7,9-unsubstituted-deazaxanthines revealed that 9-OH-9-deazaxanthines are more potent hA(2B) ligands with lower partition coefficients and higher water solubility compared to the other two congeneric classes of deazaxanthines. An optimization of the para-substituent of the 8-phenyl ring of 9-OH-9-deazaxanthines led to the discovery of compound 38, which exhibited outstanding hA(2B) affinity (Ki=1.0 nM), good selectivity over hA(2A), hA(1) and hA(3) (selectivity indices=100, 79 and 1290, respectively) and excellent antagonist potency in a functional assay on rat A(2B) (pA(2B)=9.33).


Journal of Cerebral Blood Flow and Metabolism | 2016

A novel mechanism of neuroprotection: Blood glutamate grabber

José Castillo; María Isabel Loza; David Mirelman; José Antonio Fraiz Brea; Miguel Blanco; Tomás Sobrino; Francisco Campos

Glutamate excitotoxicity is a primary contributor of ischemic neuronal death and other cellular components of the neurovascular unit. Several strategies have been developed against glutamate excitotoxicity, however none of them have not shown positive results in the clinical practice so far. Nowadays, the concept of blood/brain glutamate grabbing or scavenging is well recognized as a novel and attractive protective strategy to reduce the excitotoxic effect of excess extracellular glutamate that accumulates in the brain following an ischemic stroke. The main advantage of this novel therapeutic strategy is that it occurs in the blood circulation and therefore does not affect the normal brain neurophysiology, as it has been described for other drug treatments used against glutamate excitotoxicity. In this work we report all experimental data from the beginning of our studies, focused on stroke pathology, and we describe new findings about the potential application of this therapy. Future clinical trials will allow to know the real efficacy of this novel therapeutic strategy in stroke patients.


International Journal of Pharmaceutics | 2013

Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

Adriana Cambón; Ana Rey-Rico; Dharmista Mistry; José Antonio Fraiz Brea; María Isabel Loza; David Attwood; Silvia Barbosa; Carmen Alvarez-Lorenzo; Angel Concheiro; Pablo Taboada; Víctor Mosquera

Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell response modifiers to complement their role as efficient nanocarriers for cancer chemotherapy.


PLOS ONE | 2014

The Application of the Open Pharmacological Concepts Triple Store (Open PHACTS) to Support Drug Discovery Research

Joseline Ratnam; Barbara Zdrazil; Daniela Digles; Emiliano Cuadrado-Rodriguez; Jean-Marc Neefs; Hannah Tipney; Ronald Siebes; Andra Waagmeester; Glyn Bradley; Chau Han Chau; Lars Richter; José Antonio Fraiz Brea; Chris T. Evelo; Edgar Jacoby; Stefan Senger; María Isabel Loza; Gerhard F. Ecker; Christine Chichester

Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.

Collaboration


Dive into the María Isabel Loza's collaboration.

Top Co-Authors

Avatar

José Antonio Fraiz Brea

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

María Isabel Cadavid

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Enrique Raviña

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ferran Sanz

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Christian F. Masaguer

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Marián Castro

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Eddy Sotelo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xerardo García-Mera

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Eduardo Domínguez

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge