Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María J. García is active.

Publication


Featured researches published by María J. García.


JAMA | 2012

Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

Kelly L. Bolton; Georgia Chenevix-Trench; Cindy Goh; Siegal Sadetzki; Susan J. Ramus; Beth Y. Karlan; Diether Lambrechts; Evelyn Despierre; Daniel Barrowdale; Lesley McGuffog; Sue Healey; Douglas F. Easton; Olga M. Sinilnikova; Javier Benitez; María J. García; Susan L. Neuhausen; Mitchell H. Gail; Patricia Hartge; Susan Peock; Debra Frost; D. Gareth Evans; Rosalind Eeles; Andrew K. Godwin; Mary B. Daly; Ava Kwong; Edmond S K Ma; Conxi Lázaro; Ignacio Blanco; Marco Montagna; Emma D'Andrea

CONTEXTnApproximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear.nnnOBJECTIVEnTo characterize the survival of BRCA carriers with EOC compared with noncarriers and to determine whether BRCA1 and BRCA2 carriers show similar survival patterns.nnnDESIGN, SETTING, AND PARTICIPANTSnA pooled analysis of 26 observational studies on the survival of women with ovarian cancer, which included data from 1213 EOC cases with pathogenic germline mutations in BRCA1 (n = 909) or BRCA2 (n = 304) and from 2666 noncarriers recruited and followed up at variable times between 1987 and 2010 (the median year of diagnosis was 1998).nnnMAIN OUTCOME MEASUREnFive-year overall mortality.nnnRESULTSnThe 5-year overall survival was 36% (95% CI, 34%-38%) for noncarriers, 44% (95% CI, 40%-48%) for BRCA1 carriers, and 52% (95% CI, 46%-58%) for BRCA2 carriers. After adjusting for study and year of diagnosis, BRCA1 and BRCA2 mutation carriers showed a more favorable survival than noncarriers (for BRCA1: hazard ratio [HR], 0.78; 95% CI, 0.68-0.89; P < .001; and for BRCA2: HR, 0.61; 95% CI, 0.50-0.76; P < .001). These survival differences remained after additional adjustment for stage, grade, histology, and age at diagnosis (for BRCA1: HR, 0.73; 95% CI, 0.64-0.84; P < .001; and for BRCA2: HR, 0.49; 95% CI, 0.39-0.61; P < .001). The BRCA1 HR estimate was significantly different from the HR estimated in the adjusted model (P for heterogeneity = .003).nnnCONCLUSIONnAmong patients with invasive EOC, having a germline mutation in BRCA1 or BRCA2 was associated with improved 5-year overall survival. BRCA2 carriers had the best prognosis.


Oncogene | 2005

A 1 Mb minimal amplicon at 8p11–12 in breast cancer identifies new candidate oncogenes

María J. García; Jessica C.M. Pole; Suet-Feung Chin; Andrew E. Teschendorff; Ali Naderi; Hilal Ozdag; Maria Vias; Tanja Kranjac; Tatiana Subkhankulova; C. Paish; Ian O. Ellis; James D. Brenton; Paul A.W. Edwards; Carlos Caldas

Amplification of 8p11–12 is a well-known alteration in human breast cancers but the driving oncogene has not been identified. We have developed a high-resolution comparative genomic hybridization array covering 8p11–12 and analysed 33 primary breast tumors, 20 primary ovarian tumors and 27 breast cancer cell lines. Expression analysis of the genes in the region was carried out by using real-time quantitative PCR and/or oligo-microarray profiling. In all, 24% (8/33) of the breast tumors, 5% (1/20) of the ovary tumors and 15% (4/27) of the cell lines showed 8p11–12 amplification. We identified a 1u2009Mb segment of common amplification that excludes previously proposed candidate genes. Some of the amplified genes did not show overexpression, whereas for others, overexpression was not specifically attributable to amplification. The genes FLJ14299, C8orf2, BRF2 and RAB11FIP, map within the 8p11–12 minimal amplicon, two have a putative function consistent with an oncogenic role, these four genes showed a strong correlation between amplification and overexpression and are therefore the best candidate driver oncogenes at 8p12.


Oncogene | 2010

Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma

Susanna L. Cooke; Charlotte K.Y. Ng; Nataliya Melnyk; María J. García; Tom Hardcastle; Jillian Temple; Simon P. Langdon; David Huntsman; James D. Brenton

Resistance to chemotherapy in ovarian cancer is poorly understood. Evolutionary models of cancer predict that, following treatment, resistance emerges either because of outgrowth of an intrinsically resistant sub-clone or evolves in residual disease under the selective pressure of treatment. To investigate genetic evolution in high-grade serous (HGS) ovarian cancers, we first analysed cell line series derived from three cases of HGS carcinoma before and after platinum resistance had developed (PEO1, PEO4 and PEO6; PEA1 and PEA2; and PEO14 and PEO23). Analysis with 24-colour fluorescence in situ hybridisation and single nucleotide polymorphism (SNP) array comparative genomic hybridisation (CGH) showed mutually exclusive endoreduplication and loss of heterozygosity events in clones present at different time points in the same individual. This implies that platinum-sensitive and -resistant disease was not linearly related, but shared a common ancestor at an early stage of tumour development. Array CGH analysis of six paired pre- and post-neoadjuvant treatment HGS samples from the CTCR-OV01 clinical study did not show extensive copy number differences, suggesting that one clone was strongly dominant at presentation. These data show that cisplatin resistance in HGS carcinoma develops from pre-existing minor clones but that enrichment for these clones is not apparent during short-term chemotherapy treatment.


Oncogene | 2007

Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers

Suet-Feung Chin; Yanzhong Wang; Natalie P. Thorne; Andrew E. Teschendorff; Sarah Pinder; Maria Vias; Ali Naderi; Ian Roberts; Nuno L. Barbosa-Morais; María J. García; N G Iyer; T Kranjac; J.F.R. Robertson; Sam Aparicio; Simon Tavaré; I.O. Ellis; James D. Brenton; Carlos Caldas

We analysed 148 primary breast cancers using BAC-arrays containing 287 clones representing cancer-related gene/loci to obtain genomic molecular portraits. Gains were detected in 136 tumors (91.9%) and losses in 123 tumors (83.1%). Eight tumors (5.4%) did not have any genomic aberrations in the 281 clones analysed. Common (more than 15% of the samples) gains were observed at 8q11–qtel, 1q21–qtel, 17q11–q12 and 11q13, whereas common losses were observed at 16q12–qtel, 11ptel–p15.5, 1p36–ptel, 17p11.2–p12 and 8ptel–p22. Patients with tumors registering either less than 5% (median value) or less than 11% (third quartile) total copy number changes had a better overall survival (log-rank test: P=0.0417 and P=0.0375, respectively). Unsupervised hierarchical clustering based on copy number changes identified four clusters. Women with tumors from the cluster with amplification of three regions containing known breast oncogenes (11q13, 17q12 and 20q13) had a worse prognosis. The good prognosis group (Nottingham Prognostic Index (NPI) ⩽3.4) tumors had frequent loss of 16q24–qtel. Genes significantly associated with estrogen receptor (ER), Grade and NPI were used to build k-nearest neighbor (KNN) classifiers that predicted ER, Grade and NPI status in the test set with an average misclassification rate of 24.7, 25.7 and 35.7%, respectively. These data raise the prospect of generating a molecular taxonomy of breast cancer based on copy number profiling using tumor DNA, which may be more generally applicable than expression microarray analysis.


Oncogene | 2008

Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes

Lorenzo Melchor; Emiliano Honrado; María J. García; Sara Alvarez; José Palacios; A Osorio; Katherine L. Nathanson; Javier Benitez

Five breast cancer subtypes have been described in sporadic breast cancer (SBC) using expression arrays: basal-like, ERBB2, normal breast-like, luminal A and B. These molecular subtypes show different genomic aberration patterns (GAPs). Recently, our group described these breast cancer subtypes in 50 non-BRCA1/2 familial tumors using immunohistochemistry assays. We extended this study to the other classes of familial breast cancer (FBC), including 62 tumors (18 BRCA1, 16 BRCA2 and 28 non-BRCA1/2), with the same panel of 25 immunohistochemical (IHC) markers and histological grade obtaining a similar classification. We combined these data with results generated by a 1u2009Mb BAC array-based CGH study to evaluate the genomic aberrations of each group. We found that BRCA1-related tumors are preferentially basal-like, whereas non-BRCA1/2 familial tumors are mainly luminal A subtype. We described distinct GAPs related to each IHC subtype. Basal tumors had a greater number of gains/losses, while luminal B tumors had more high-level DNA amplifications. Our data are similar to those obtained in SBC studies, highlighting the existence of distinct genetic pathways of tumor evolution, common to both SBC and FBC.


Breast Cancer Research and Treatment | 2009

Analysis of FANCB and FANCN/PALB2 Fanconi Anemia genes in BRCA1/2 -negative Spanish breast cancer families

María J. García; Victoria Fernández; Ana Osorio; Alicia Barroso; Gemma Llort; Conxi Lázaro; Ignacio Blanco; Trinidad Caldés; Miguel de la Hoya; Teresa Ramón y Cajal; Carmen Alonso; María-Isabel Tejada; Carlos San Román; Luis Robles-Díaz; Miguel Urioste; Javier Benitez

Recent reports have shown that mutations in the FANCJ/BRIP1 and FANCN/PALB2 Fanconi Anemia (FA) genes confer a moderate breast cancer risk. Discussion has been raised on the phenotypic characteristics of the PALB2-associated families and tumors. The role of FANCB in breast cancer susceptibility has not been tested to date. Likewise PALB2 mutation frequency has not been studied in Spanish population. We analyzed the complete coding sequence and splicing sites of FANCB and PALB2 in 95 index cases of BRCA1/2-negative Spanish breast cancer families. We also performed an exhaustive screening of three previously described rare but recurrent PALB2 mutations in 725 additional probands. Pathogenic changes were not detected in FANCB. We found a novel PALB2 truncating mutation c.1056_1057delGA (p.K353IfsX7) in one of the 95 screened patients, accounting for a mutation frequency of 1% in our series. Further comprehensive screening of the novel mutation and of previously reported rare but recurrent PALB2 mutations did not reveal any carrier patient. We report the first example of LOH occurring in a PALB2-associated tumor. Our results rule out a major contribution of FANCB to hereditary breast cancer. Our data are consistent with the notion of individually rare PALB2 mutations, lack of mutational hot-spots in the gene and existence of between-population disease-allele heterogeneity. We show evidence that PALB2 loss of function might also conform to the inactivation model of a classic tumor-suppressor gene and present data that adds to the clinically relevant discussion about the existence of a PALB2-breast cancer phenotype.


Oncogene | 2006

High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation.

Jessica C.M. Pole; Celine Courtay-Cahen; María J. García; Katherine A Blood; Susanna L. Cooke; Amber E. Alsop; D M L Tse; Carlos Caldas; Paw Edwards

The short arm of chromosome 8, 8p, is often rearranged in carcinomas, typically showing distal loss by unbalanced translocation. We analysed 8p rearrangements in 48 breast, pancreatic and colon cancer cell lines by fluorescence in situ hybridization (FISH) and array comparative genomic hybridization, with a tiling path of 0.2u2009Mb resolution over 8p12 and 1u2009Mb resolution over chromosome 8. Selected breast lines (MDA-MB-134, MDA-MB-175, MDA-MB-361, T-47D and ZR-75-1) were analysed further. Most cell lines showed loss of 8p distal to a break that was between 31u2009Mb (5′ to NRG1) and the centromere, but the translocations were accompanied by variable amplifications, deletions and inversions proximal to this break. The 8p12 translocation in T-47D was flanked by an inversion of 4u2009Mb, with a 100u2009kb deletion at the proximal end. The dicentric t(8;11) in ZR-75-1 carries multiple rearrangements including interstitial deletions, a triplicated translocation junction between NRG1 and a fragment of 11q (unconnected to CCND1), and two separate amplifications, of FGFR1 and CCND1 . We conclude that if there is a tumour suppressor gene on 8p it may be near 31u2009Mb, for example WRN; but the complexity of 8p rearrangements suggests that they target various genes proximal to 31u2009Mb including NRG1 and the amplicon centred around ZNF703/FLJ14299.


Cancer Research | 2004

A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene

Huai-En Huang; Suet-Feung Chin; Christophe Ginestier; Valérie-Jeanne Bardou; José Adélaïde; N. Gopalakrishna Iyer; María J. García; Jessica C.M. Pole; Grace Callagy; Stephen M. Hewitt; William J. Gullick; Jocelyne Jacquemier; Carlos Caldas; Max Chaffanet; Daniel Birnbaum; Paul A.W. Edwards

Most studies of genomic rearrangements in common cancers have focused on regional gains and losses, but some rearrangements may break within specific genes. We previously reported that five breast cancer cell lines have chromosome translocations that break in the NRG1 gene and that could cause abnormal NRG1 expression. NRG1 encodes the Neuregulins 1 (formerly the Heregulins), ligands for members of the ErbB/epidermal growth factor-receptor family, which includes ErbB2/HER2. We have now screened for breaks at NRG1 in paraffin sections of breast tumors. Tissue microarrays were screened by fluorescence in situ hybridization, with hybridization probes proximal and distal to the expected breakpoints. This screen detects breaks but does not distinguish between translocation or deletion breakpoints. The screen was validated with array-comparative genomic hybridization on a custom 8p12 high-density genomic array to detect a lower copy number of the sequences that were lost distal to the breaks. We also precisely mapped the breaks in five tumors with different hybridization probes. Breaks in NRG1 were detected in 6% (19 of 323) of breast cancers and in some lung and ovarian cancers. In an unselected series of 213 cases with follow-up, breast cancers where the break was detected tended to be high-grade (65% grade III compared with 28% of negative cases). They were, like breast tumors in general, mainly ErbB2 low (11 of 13 were low) and estrogen receptor positive (11 of 13 positive).


International Journal of Cancer | 2002

Frequent inactivation of the p73 gene by abnormal methylation or LOH in non‐Hodgkin's lymphomas

Beatriz Martínez-Delgado; Bárbara Meléndez; Marta Cuadros; María J. García; Josep Nomdedeu; Carmen Rivas; José Fernández-Piqueras; Javier Benitez

p73 is a candidate tumor suppressor and imprinted gene that shares significant homology with the p53 gene. It is located on 1p36, a region frequently deleted in neuroblastoma and other tumors. To investigate the pattern of inactivation of this gene in human lymphomas, we studied 59 tumors to identify abnormal methylation in exon 1 and loss of heterozygosity (LOH) at this locus. p73 was methylated in 13/50 (26%) B cell lymphomas. There was no evidence of p73 methylation in the 9 T cell lymphomas analyzed. Burkitts lymphomas showed the highest proportion of methylated cases (36%), although this alteration also affected other aggressive lymphomas such as diffuse large cell and some marginal zone lymphomas. LOH at the p73 locus was detected in 4/34 (11%) B and 1/9 (11%) T cell lymphomas. The p73 expression analysis showed absence or low level of p73 product in methylated lymphomas, whereas p73 was always detected in unmethylated tumors. We found monoallelic expression in normal peripheral blood samples, consistent with imprinting. None of the tumors showed LOH and methylation of the remaining allele simultaneously, suggesting that alteration of the expressed allele could lead to the total inactivation of the gene. Our results show that deletion or methylation of the p73 gene could be important mechanisms in suppressing p73 expression in B cell non‐Hodgkins lymphomas.


Breast Cancer Research | 2009

Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes

Lorenzo Melchor; Laura Saucedo-Cuevas; Iván Muñoz-Repeto; Socorro María Rodríguez-Pinilla; Emiliano Honrado; Alfredo Campoverde; José Palacios; Katherine L. Nathanson; María J. García; Javier Benitez

IntroductionBreast cancer subtypes exhibit different genomic aberration patterns with a tendency for high-level amplifications in distinct chromosomal regions. These genomic aberrations may drive carcinogenesis through the upregulation of proto-oncogenes. We have characterized DNA amplification at the human chromosomal region 13q34 in breast cancer.MethodsA set of 414 familial and sporadic breast cancer cases was studied for amplification at region 13q34 by fluorescence in situ hybridization (FISH) analysis on tissue microarrays. Defining the minimal common region of amplification in those cases with amplification at 13q34 was carried out using an array-based comparative genomic hybridization platform. We performed a quantitative real-time - polymerase chain reaction (qRT-PCR) gene expression analysis of 11 candidate genes located within the minimal common region of amplification. Protein expression levels of two of these genes (TFDP1 and CUL4A) were assessed by immunohistochemical assays on the same tissue microarrays used for FISH studies, and correlated with the expression of a panel of 33 antibodies previously analyzed.ResultsWe have found 13q34 amplification in 4.5% of breast cancer samples, but the frequency increased to 8.1% in BRCA1-associated tumors and to 20% in basal-like tumors. Tumors with 13q34 amplification were associated with high grade, estrogen receptor negativity, and expression of EGFR, CCNE, CK5, and P-Cadherin, among other basal cell markers. We have defined a 1.83 megabases minimal common region of genomic amplification and carried out mRNA expression analyses of candidate genes located therein, identifying CUL4A and TFDP1 as the most likely target genes. Moreover, we have confirmed that tumors with 13q34 amplification significantly overexpress CUL4A and TFDP1 proteins. Tumors overexpressing either CUL4A or TFDP1 were associated with tumor proliferation and cell cycle progression markers.ConclusionsWe conclude that 13q34 amplification may be of relevance in tumor progression of basal-like breast cancers by inducing overexpression of CUL4A and TFDP1, which are both important in cell cycle regulation. Alternatively, as these genes were also overexpressed in non-basal-like tumor samples, they could play a wider role in cancer development by inducing tumor proliferation.

Collaboration


Dive into the María J. García's collaboration.

Top Co-Authors

Avatar

Ana Osorio

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Urioste

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Melchor

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Alicia Cazorla

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge