Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria J. Ribeiro is active.

Publication


Featured researches published by Maria J. Ribeiro.


Human Molecular Genetics | 2008

Lack of replication of association between GIGYF2 variants and Parkinson disease.

Jose Bras; Javier Simón-Sánchez; Monica Federoff; Ana Morgadinho; Cristina Januário; Maria J. Ribeiro; Luís Cunha; Catarina R. Oliveira; Andrew Singleton

Mutations in GIGYF2 have recently been described as causative of Parkinsons disease in Europeans. In an attempt to replicate these results in independent populations, we sequenced the entire coding region of GIGYF2 in a large series of Portuguese and North American samples. We report the finding of two of the previously published mutations in neurologically normal Control individuals. This suggests that mutations in GIGYF2 are not strongly related to the development of the disease in either of these populations.


BMC Neurology | 2008

Analysis of Parkinson disease patients from Portugal for mutations in SNCA, PRKN, PINK1 and LRRK2

Jose Bras; Rita Guerreiro; Maria J. Ribeiro; Ana Morgadinho; Cristina Januário; Margarida Dias; Ana Calado; Cristina Semedo; Catarina R. Oliveira; John Hardy; Andrew Singleton

BackgroundMutations in the genes PRKN and LRRK2 are the most frequent known genetic lesions among Parkinsons disease patients. We have previously reported that in the Portuguese population the LRRK2 c.6055G > A; p.G2019S mutation has one of the highest frequencies in Europe.MethodsHere, we follow up on those results, screening not only LRRK2, but also PRKN, SNCA and PINK1 in a cohort of early-onset and late-onset familial Portuguese Parkinson disease patients. This series comprises 66 patients selected from a consecutive series of 132 patients. This selection was made in order to include only early onset patients (age at onset below 50 years) or late-onset patients with a positive family history (at least one affected relative). All genes were sequenced bi-directionally, and, additionally, SNCA, PRKN and PINK1 were subjected to gene dosage analysis.ResultsWe found mutations both in LRRK2 and PRKN, while the remaining genes yielded no mutations. Seven of the studied patients showed pathogenic mutations, in homozygosity or compound heterozygosity for PRKN, and heterozygosity for LRRK2.ConclusionMutations are common in Portuguese patients with Parkinsons disease, and these results clearly have implications not only for the genetic diagnosis, but also for the genetic counseling of these patients.


Brain | 2013

GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype-phenotype correlations and functional impact.

Inês R. Violante; Maria J. Ribeiro; Richard A.E. Edden; Pedro Guimarães; Inês Bernardino; José Rebola; Gil Cunha; Eduardo A. Silva; Miguel Castelo-Branco

Alterations in the balance between excitatory and inhibitory neurotransmission have been implicated in several neurodevelopmental disorders. Neurofibromatosis type 1 is one of the most common monogenic disorders causing cognitive deficits for which studies on a mouse model (Nfl(+/-)) proposed increased γ-aminobutyric acid-mediated inhibitory neurotransmission as the neural mechanism underlying these deficits. To test whether a similar mechanism translates to the human disorder, we used magnetic resonance spectroscopy to measure γ-aminobutyric acid levels in the visual cortex of children and adolescents with neurofibromatosis type 1 (n = 20) and matched control subjects (n = 26). We found that patients with neurofibromatosis type 1 have significantly lower γ-aminobutyric acid levels than control subjects, and that neurofibromatosis type 1 mutation type significantly predicted cortical γ-aminobutyric acid. Moreover, functional imaging of the visual cortex indicated that blood oxygen level-dependent signal was correlated with γ-aminobutyric acid levels both in patients and control subjects. Our results provide in vivo evidence of γ-aminobutyric acidergic dysfunction in neurofibromatosis type 1 by showing a reduction in γ-aminobutyric acid levels in human patients. This finding is relevant to understand the physiological profile of the disorder and has implications for the identification of targets for therapeutic strategies.


PLOS ONE | 2012

Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network

Inês R. Violante; Maria J. Ribeiro; Gil Cunha; Inês Bernardino; João V. Duarte; Fabiana Ramos; Jorge A. Saraiva; Eduardo A. Silva; Miguel Castelo-Branco

Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.


Cortex | 2015

Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1

Maria J. Ribeiro; Inês R. Violante; Inês Bernardino; Richard A.E. Edden; Miguel Castelo-Branco

Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and region dependent manner.


Human Brain Mapping | 2014

Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1.

João V. Duarte; Maria J. Ribeiro; Inês R. Violante; Gil Cunha; Eduardo A. Silva; Miguel Castelo-Branco

Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model‐driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data‐driven classification approach. We used support vector machines (SVM) to classify whole‐brain GM and WM segments of structural T1‐weighted MRI scans from 39 participants with NF1 and 60 non‐affected individuals, divided in children/adolescents and adults groups. We also employed voxel‐based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data‐driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Hum Brain Mapp 35:89–106, 2014.


Molecular Neurobiology | 2015

Activation of IGF-1 and Insulin Signaling Pathways Ameliorate Mitochondrial Function and Energy Metabolism in Huntington’s Disease Human Lymphoblasts

Luana Naia; I. Luísa Ferreira; Teresa Cunha-Oliveira; Ana I. Duarte; Márcio Ribeiro; Tatiana R. Rosenstock; Mário N. Laço; Maria J. Ribeiro; Catarina R. Oliveira; Frédéric Saudou; Sandrine Humbert; A. Cristina Rego

Huntington’s disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca2+ levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca2+ accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.


Journal of Neurodevelopmental Disorders | 2013

Gyrification, cortical and subcortical morphometry in neurofibromatosis type 1: an uneven profile of developmental abnormalities

Inês R. Violante; Maria J. Ribeiro; Eduardo Silva; Miguel Castelo-Branco

BackgroundNeurofibromatosis type 1 (NF1) is a monogenic disorder associated with cognitive impairments. In order to understand how mutations in the NF1 gene impact brain structure it is essential to characterize in detail the brain structural abnormalities in patients with NF1. Previous studies have reported contradictory findings and have focused only on volumetric measurements. Here, we investigated the volumes of subcortical structures and the composite dimensions of the cortex through analysis of cortical volume, cortical thickness, cortical surface area and gyrification.MethodsWe studied 14 children with NF1 and 14 typically developing children matched for age, gender, IQ and right/left-handedness. Regional subcortical volumes and cortical gyral measurements were obtained using the FreeSurfer software. Between-group differences were evaluated while controlling for the increase in total intracranial volume observed in NF1.ResultsSubcortical analysis revealed disproportionately larger thalami, right caudate and middle corpus callosum in patients with NF1. Cortical analyses on volume, thickness and surface area were however not indicative of significant alterations in patients. Interestingly, patients with NF1 had significantly lower gyrification indices than typically developing children primarily in the frontal and temporal lobes, but also affecting the insula, cingulate cortex, parietal and occipital regions.ConclusionsThe neuroanatomic abnormalities observed were localized to specific brain regions, indicating that particular areas might constitute selective targets for NF1 gene mutations. Furthermore, the lower gyrification indices were accompanied by a disproportionate increase in brain size without the corresponding increase in folding in patients with NF1. Taken together these findings suggest that specific neurodevelopmental processes, such as gyrification, are more vulnerable to NF1 dysfunction than others. The identified changes in brain organization are consistent with the patterns of cognitive dysfunction in the NF1 phenotype.


Investigative Ophthalmology & Visual Science | 2012

Abnormal Achromatic and Chromatic Contrast Sensitivity in Neurofibromatosis Type 1

Maria J. Ribeiro; Inês R. Violante; Inês Bernardino; Fabiana Ramos; Jorge A. Saraiva; Pablo Reviriego; Meena Upadhyaya; Eduardo Silva; Miguel Castelo-Branco

PURPOSE Neurofibromatosis type 1 (NF1) is a monogenic disorder with the majority of patients presenting subtle to moderate cognitive impairments. Visuospatial deficits are considered to be one of the hallmark characteristics of their cognitive profile. However, low-level visual processing has not been previously investigated. Our aim was to study contrast perception in these patients to assess the function of early visual areas. METHODS Contrast sensitivity was tested in 19 children and adolescents with NF1 and 33 control children and adolescents and 12 adults with NF1 and 24 control adults. The tasks used probed two achromatic spatiotemporal frequency channels and chromatic red-green and blue-yellow pathways. RESULTS Individuals with NF1 showed significant contrast sensitivity deficits for the achromatic higher spatial frequency channel [F(₁,₈₃) = 36.1, P < 0.001] and for the achromatic low spatial high temporal (magnocellular) frequency channel [F(₁,₇₂) = 8.0, P < 0.01]. Furthermore, individuals with NF1 presented a significant deficit in chromatic red-green (parvocellular) contrast sensitivity (P < 0.01) but not in blue-yellow (koniocelular) sensitivity. The decrease in achromatic sensitivity for higher spatial frequency was observed throughout the visual field, in both central and peripheral locations. In contrast, central contrast sensitivity for the magnocellular-biased condition was relatively preserved and only peripheral sensitivity was affected. Interestingly, the same pattern of deficits was found in both age groups tested. CONCLUSIONS These findings showed that contrast sensitivity is impaired in patients with NF1, associating for the first time abnormal low-level vision to the cognitive profile of this disorder.


Journal of Neurodevelopmental Disorders | 2014

Abnormal late visual responses and alpha oscillations in neurofibromatosis type 1: a link to visual and attention deficits

Maria J. Ribeiro; Otília C. d’Almeida; Fabiana Ramos; Jorge M. Saraiva; Eduardo Silva; Miguel Castelo-Branco

BackgroundNeurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods.MethodsElectroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow.ResultsWe found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups.ConclusionsOur findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1.

Collaboration


Dive into the Maria J. Ribeiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gil Cunha

University of Coimbra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge