Maria J. Simões
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria J. Simões.
Biomaterials | 2008
Sandra Amado; Maria J. Simões; P.A.S. Armada da Silva; Ana Lúcia Luís; Yuki Shirosaki; Maria A. Lopes; José D. Santos; Federica Fregnan; Giovanna Gambarotta; Stefania Raimondo; Michele Fornaro; António Veloso; Artur S.P. Varejão; Ana Colette Maurício; Stefano Geuna
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.
Journal of Neuroscience Methods | 2007
Ana Lúcia Luís; Sandra Amado; Stefano Geuna; Jorge Rodrigues; Maria J. Simões; José D. Santos; Federica Fregnan; Stefania Raimondo; A. Prieto Veloso; António J. Ferreira; Paulo A.S. Armada-da-Silva; Artur S.P. Varejão; Ana Colette Maurício
We have recently described the sequence of functional and morphologic changes occurring after a standardized sciatic nerve crush injury. An 8-week post-injury time was used because this end point is the far most used. Unexpectedly, both functional and morphological data revealed that animals had still not recovered to normal pre-injury levels. Therefore, the present study was designed in order to prolong the observation up to 12 weeks. Functional recovery was evaluated using sciatic functional index (SFI), static sciatic index (SSI), extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. In addition, quantitative morphology was carried out on regenerated nerve fibers. A full functional recovery was predicted by SFI/SSI, EPT and WRL but not all ankle kinematics parameters. Moreover, only two morphological parameters (myelin thickness/axon diameter ratio and fiber/axon diameter ratio) returned to normal values. Data presented in this paper provide a baseline for selecting the adequate end-point and methods of recovery assessment for a rat sciatic nerve crush study and suggest that the combined use of functional and morphological analysis should be recommended in this experimental model.
Journal of Neuroengineering and Rehabilitation | 2010
Sandra Amado; Jorge Rodrigues; Ana Lúcia Luís; Paulo A.S. Armada-da-Silva; Márcia Vieira; Andrea Gärtner; Maria J. Simões; António Veloso; Michele Fornaro; Stefania Raimondo; Artur Varejão; Stefano Geuna; Ana Colette Maurício
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.
International Review of Neurobiology | 2009
Luís M. Costa; Maria J. Simões; Ana Colette Maurício; Artur S.P. Varejão
Functional recovery is one of the primary goals of therapeutic intervention in peripheral nerve research. The number and diversity of tests which have been used to assess functional recovery after experimental interventions often makes it difficult to recommend any particular indicator of nerve regeneration. Functional assessment after sciatic nerve lesion has long been focused on walking track analysis; however, it is important to note that the validity of the sciatic functional index has been questioned by several researchers. In the last decade, several authors have designed a series of sensitive quantitative methods to assess the recovery of locomotor function using computerized rat gait analysis. The objective of the present review is to provide a helpful tool for the peripheral nerve investigator, by integrating the most important gait kinematic measures described in the literature that can be gathered with this technology.
Italian journal of anatomy and embryology | 2010
Maria J. Simões; Sandra Amado; Andrea Gärtner; Paulo A.S. Armada-da-Silva; Stefania Raimondo; Márcia Vieira; Ana Lúcia Luís; Yuki Shirosaki; António Veloso; José D. Santos; Artur S.P. Varejão; Stefano Geuna; Ana Colette Maurício
Neurotmesis must be surgically treated by direct end-to-end suture of the two nerve stumps or by a nerve graft harvested from elsewhere in the body in case of tissue loss. To avoid secondary damage due to harvesting of the nerve graft, a tube-guide can be used to bridge the nerve gap. Previously, our group developed and tested hybrid chitosan membranes for peripheral nerve tubulization and showed that freeze-dried chitosan type III membranes were particularly effective for improving peripheral nerve functional recovery after axonotmesis. Chitosan type III membranes have about 110 microm pores and about 90% of porosity, due to the employment of freeze-drying technique. The present study aimed to verify if chitosan type III membranes can be successfully used also for improving peripheral nerve functional recovery after neurotmesis of the rat sciatic nerve. Sasco Sprague-Dawley adult rats were divided into 6 groups: Group 1: end-to-end neurorrhaphy enwrapped by chitosan membrane type III (End-to-EndChitll); Group 2: 10mm-nerve gap bridged by an autologous nerve graft enwrapped by chitosan membrane type III (Graf180degreeChitIII); Group 3: 10 mm-nerve gap bridged by chitosan type III tube-guides (GapChitIII); These 3 experimental groups were compared with 3 control groups, respectively: Group 4: 10 mm-nerve gap bridged by an autologous nerve graft (Graft180degree); Group 5: 10 mm-nerve gap bridged by PLGA 90:10 tube-guides (PLGA); Group 6: end-to-end neurorrhaphy alone (End-to-End). Motor and sensory functional recovery were evaluated throughout a healing period of 20 weeks using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. Regenerated nerves withdrawn at the end of the experiment were analysed histologically. Results showed that nerve regeneration was successful in all experimental and control groups and that chitosan type III tubulization induced a significantly better nerve regeneration and functional recovery in comparison to PLGA tubulization control. Further investigation is needed to explore the mechanisms at the basis of the positive effects of chitosan type III on axonal regeneration.
Behavioural Brain Research | 2011
Sandra Amado; Paulo A.S. Armada-da-Silva; Filipa João; Ana Colette Maurício; Ana Lúcia Luís; Maria J. Simões; António Veloso
Walking analysis in the rat is increasingly used to assess functional recovery after peripheral nerve injury. Here we assess the sensitivity and specificity of hindlimb joint kinematics measures during the rat gait early after sciatic nerve crush injury (DEN), after twelve weeks of recovery (REINN) and in sham-operated controls (Sham) using discriminant analysis. The analysis addressed gait spatiotemporal variables and hip, knee and ankle angle and angular velocity measures during the entire walking cycle. In DEN animals, changes affected all studied joints plus spatiotemporal parameters of gait. Both the spatiotemporal and ankle kinematics parameters recovered to normality within twelve weeks. At this time point, some hip and knee kinematics values were still abnormal when compared to sham controls. Discriminant models based on hip, knee and ankle kinematics displayed maximal sensitivity to identify DEN animals. However, the discriminant models based on spatiotemporal and ankle kinematics data showed a poor performance when assigning animals to the REINN and Sham groups. Models using hip and knee kinematics during walking showed the best sensitivity to recognize the reinnervated animals. The model construed on the basis of hip joint kinematics was the one combining highest sensitivity with robustness and high specificity. It is concluded that ankle joint kinematics fails in detecting minor functional deficits after long term recovery from sciatic nerve crush and extending the kinematic analysis during walking to the hip and knee joints improves the sensitivity of this functional test.
Microsurgery | 2008
Ana Lúcia Luís; Jorge Rodrigues; Stefano Geuna; Sandra Amado; Maria J. Simões; Federica Fregnan; António J. Ferreira; António Veloso; Paulo A.S. Armada-da-Silva; Artur S.P. Varejão; Ana Colette Maurício
The goal of the present study was to assess whether in vitro‐differentiated N1E‐115 cells supported by a collagen membrane would enhance rat sciatic nerve regeneration after a crush injury. To set up an appropriate experimental model for investigating the effects of neural cell transplantation, we have recently described the sequence of functional and morphologic changes occurring after a standardized sciatic nerve crush injury with a nonserrated clamp. Functional recovery was evaluated using the sciatic functional index, the static sciatic index, the extensor postural thrust, the withdrawal reflex latency, and ankle kinematics. In addition, histomorphometric analysis was carried out on regenerated nerve fibers by means of the 2D‐disector method. Based on the results of the EPT and of some of the ankle locomotor kinematic parameters analyzed, the hypothesis that N1E‐115 cells may enhance nerve regeneration is partially supported although histomorphometry disclosed no significant difference in nerve fiber regeneration between the different experimental groups. Therefore, results suggest that enrichment of equine type III collagen membrane with the N1E‐115 cellular system in the rat sciatic nerve crush model may support recovery, at least in terms of motor function. The discrepancy between functional and morphological results also suggests that the combined use of functional and morphological analysis should be recommended for an overall assessment of recovery in nerve regeneration studies.
Neural Regeneration Research | 2012
Andrea Gärtner; Tiago Pereira; Maria J. Simões; Paulo A.S. Armada-da-Silva; Miguel L. França; Rosa Sousa; Simone Bompasso; Stefania Raimondo; Yuki Shirosaki; Yuri Nakamura; Satoshi Hayakawa; Akiyoshi Osakah; Beatriz Porto; Ana Lúcia Luís; Artur S.P. Varejão; Ana Colette Maurício
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Whartons jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Whartons jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.
Key Engineering Materials | 2007
Paulo Cortez; Yuki Shirosaki; C. M. Botelho; Maria J. Simões; Fátima Gärtner; R.M. Gil da Costa; Kanji Tsuru; Satoshi Hayakawa; Akiyoshi Osaka; Lopes; José D. Santos; Ana Colette Maurício
Previous in vitro studies confirmed an improved cytocompatibility of chitosan-silicate hybrid membranes over chitosan membranes. The main goal of this study was to assess the in vivo histocompatibility of both membranes through subcutaneous implantations at different time periods, 1 week, 1, 2 and 3 months, using a sheep model. Chitosan membranes elicited an exuberant inflammatory response and were consequently rejected. The hybrid chitosan membranes were not rejected and the degree of inflammatory response decreased gradually until the third month of implantation. Histological evaluation also showed that these membranes can be resorbed in vivo. This study demonstrates that the incorporation of silicate into the chitosan solution improves its histocompatibility, indicating that the hybrid chitosan-silicate membranes are suitable candidates to be used in clinical applications.
Acta Médica Portuguesa | 2011
Maria J. Simões; Andrea Gärtner; Yuki Shirosaki; R.M. Gil da Costa; Paulo Cortez; Fátima Gärtner; José D. Santos; M. C. A. Lopes; Stefano Geuna; Artur S.P. Varejão; A Colette Maurício