Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María J. Vázquez is active.

Publication


Featured researches published by María J. Vázquez.


Nature Medicine | 2010

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

Miguel López; Luis M. Varela; María J. Vázquez; Sergio Rodriguez-Cuenca; Cr Gonzalez; Vidya Velagapudi; Donald A. Morgan; Erik Schoenmakers; Khristofor Agassandian; Ricardo Lage; Pablo B. Martínez de Morentin; Sulay Tovar; Ruben Nogueiras; David Carling; Christopher J. Lelliott; Rosalía Gallego; Matej Orešič; Krishna Chatterjee; Asish K. Saha; Kamal Rahmouni; Carlos Dieguez; Antonio Vidal-Puig

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.


Cell Metabolism | 2008

Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin

Miguel López; Ricardo Lage; Asish K. Saha; Diego Perez-Tilve; María J. Vázquez; Luis M. Varela; Susana Sangiao-Alvarellos; Sulay Tovar; Kawtar Raghay; Sergio Rodriguez-Cuenca; Rosangela Deoliveira; Tamara R. Castañeda; Rakesh Datta; Jesse Z. Dong; Michael D. Culler; Mark W. Sleeman; Clara V. Alvarez; Rosalía Gallego; Christopher J. Lelliott; David Carling; Matthias H. Tschöp; Carlos Dieguez; Antonio Vidal-Puig

Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelins effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.


Diabetes | 2006

Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA

Miguel López; Christopher J. Lelliott; Sulay Tovar; Wendy Kimber; Rosalía Gallego; Sam Virtue; Margaret Blount; María J. Vázquez; Nick Finer; Trevor J. Powles; Stephen O'Rahilly; Asish K. Saha; Carlos Dieguez; Antonio Vidal-Puig

Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.


Diabetes | 2011

The Central Sirtuin 1/p53 Pathway Is Essential for the Orexigenic Action of Ghrelin

Douglas A. Velásquez; Gloria Martínez; Amparo Romero; María J. Vázquez; Katia Da Boit; Iria G. Dopeso-Reyes; Miguel López; Anxo Vidal; Ruben Nogueiras; Carlos Dieguez

OBJECTIVE Ghrelin is a stomach-derived peptide that increases food intake through the activation of hypothalamic AMP-activated protein kinase (AMPK). However, the molecular mechanisms initiated by the activation of the ghrelin receptor, which in turn lead to AMPK activation, remain unclear. Sirtuin 1 (SIRT1) is a deacetylase activated in response to calorie restriction that acts through the tumor suppressor gene p53. We tested the hypothesis that the central SIRT1/p53 pathway might be mediating the orexigenic action of ghrelin. RESEARCH DESIGN AND METHODS SIRT1 inhibitors, such as Ex527 and sirtinol, and AMPK activators, such as AICAR, were administered alongside ghrelin in the brain of rats and mice (wild-type versus p53 knockout [KO]). Their hypothalamic effects on lipid metabolism and changes in transcription factors and neuropeptides were assessed by Western blot and in situ hybridization. RESULTS The central pretreatment with Ex527, a potent SIRT1 inhibitor, blunted the ghrelin-induced food intake in rats. Mice lacking p53, a target of SIRT1 action, failed to respond to ghrelin in feeding behavior. Ghrelin failed to phosphorylate hypothalamic AMPK when rats were pretreated with Ex527, as it did in p53 KO mice. It is noteworthy that the hypothalamic SIRT1/p53 pathway seems to be specific for mediating the orexigenic action of ghrelin, because central administration of AICAR, a potent AMPK activator, increased food intake in p53 KO mice. Finally, blockade of the central SIRT1 pathway did not modify ghrelin-induced growth hormone secretion. CONCLUSIONS Ghrelin specifically triggers a central SIRT1/p53 pathway that is essential for its orexigenic action, but not for the release of growth hormone.


The FASEB Journal | 2010

Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender

Ricardo Lage; María J. Vázquez; Luis M. Varela; Asish K. Saha; Antonio Vidal-Puig; Ruben Nogueiras; Carlos Dieguez; Miguel López

The orexigenic effect of ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the hypothalamic arcuate nucleus (ARC). Recent evidence also indicates that ghrelin promotes feeding through a mechanism involving activation of hypothalamic AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase and fatty acid synthase (FAS). This results in decreased hypothalamic levels of malonyl-CoA, increased carnitine palmitoyltransferase 1 (CPT1) activity, and mitochondrial production of reactive oxygen species. We evaluated whether these molecular events are part of a unique signaling cascade or whether they represent alternative pathways mediating the orexigenic effect of ghrelin. Moreover, we examined the gender dependency of these mechanisms, because recent evidence has proposed that ghrelin orexigenic effect is reduced in female rats. We studied in both genders the effect of ghrelin on the expression of AgRP and NPY, as well as their transcription factors: cAMP response-element binding protein (CREB and its phosphorylated form, pCREB), forkhead box O1 (FoxO1 and its phosphorylated form, pFoxO1), and brain-specific homeobox transcription factor (BSX). In addition, to establish a mechanistic link between ghrelin, fatty acid metabolism, and neuropeptides, we evaluated the effect of ghrelin after blockage of hypothalamic fatty acid beta oxidation, by using the CPT1 inhibitor etomoxir. Ghrelin-induced changes in the AMPK-CPT1 pathway are associated with increased levels of AgRP and NPY mRNA expression through modulation of BSX, pCREB, and FoxO1, as well as decreased expression of endoplasmic reticulum (ER) stress markers in a gender-independent manner. In addition, blockage of hypothalamic fatty acid beta oxidation prevents the ghrelin-promoting action on AgRP and NPY mRNA expression, also in a gender-independent manner. Notably, this effect is associated with decreased BSX expression and reduced food intake. Overall, our data suggest that BSX integrates changes in neuronal metabolic status with ARC-derived neuropeptides in a gender-independent manner.


Endocrinology | 2009

Central Ghrelin Regulates Peripheral Lipid Metabolism in a Growth Hormone-Independent Fashion

Susana Sangiao-Alvarellos; María J. Vázquez; Luis M. Varela; Ruben Nogueiras; Asish K. Saha; Fernando Cordido; Miguel López; Carlos Dieguez

GH plays a major role in the regulation of lipid metabolism and alterations in GH axis elicit major changes in fat distribution and mobilization. For example, in patients with GH deficiency (GHD) or in mice lacking the GH receptor, the percentage of fat is increased. In addition to the direct actions of GH on lipid metabolism, current evidence indicates that ghrelin, a stomach-derived peptide hormone with potent GH secretagogue action, increases lipogenesis in white adipose tissue (WAT) through a hypothalamic-mediated mechanism. Still, the mechanism by which GH tone modulates ghrelin actions on WAT remains unclear. Here we investigated the effect of central ghrelin administration on lipid metabolism in lipogenic tissues (liver and WAT) in the absence of GH, by using a model for the study of GHD, namely the spontaneous dwarf rat, which shows increased body fat. Our data demonstrate that central chronic ghrelin administration regulates adipose lipid metabolism, mainly in a GH-independent fashion, as a result of increased mRNA, protein expression, and activity levels of fatty acid metabolism enzymes. On the contrary, central ghrelin regulates hepatic lipogenesis de novo in a GH-independent fashion but lipid mobilization in a GH-dependent fashion because carnitine palmitoyltransferase 1 was decreased only in wild-type Lewis rats. These findings suggest the existence of a new central nervous system-based neuroendocrine circuit, regulating metabolic homeostasis of adipose tissue. Understanding the molecular mechanism underlying the interplay between GH and ghrelin and their effects on lipid metabolism will provide new strategies for the design and development of suitable drugs for the treatment of GHD, obesity, and its comorbidities.


Journal of Molecular Endocrinology | 2008

Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa

C. Ruth González; María J. Vázquez; Miguel López; Carlos Dieguez

The most unique feature of ghrelin is the acyl-modification of a hydroxyl group of the Ser3 in the N-terminus. The Ser3 is commonly modified by n-octanoic acid in vertebrates being needed for its biological effects, at least in terms of feeding. Therefore, a critical question regarding the role of ghrelin was to characterize the mechanism involved in its acylation. The acyltransferase that catalyzes ghrelin octanoylation has been recently identified and named ghrelin O-acyltransferase (GOAT). The aim of this study was to clarify the physiological implications of GOAT in the regulation of energy balance, by assessing the effect of undernutrition, as well as fasting in adult male rats. We have determined GOAT mRNA expression levels by real time-PCR in the stomach mucosa. Our results show that chronic food restriction led to an increase in GOAT mRNA, particularly following long-term chronic malnutrition (21 days). Furthermore, following 48 h complete fasting, a situation with high-circulating ghrelin levels, we found similar mRNA expression of GOAT in fed and fasted rats; exogenous leptin administration markedly increase GOAT mRNA levels in the stomach mucosa of fasted rats. These findings suggest that increased GOAT mRNA levels may have a role in mediating the physiological responses to chronic undernutrition and could represent an adaptive response to prevent long-lasting alterations in energy balance and body weight homeostasis. Furthermore, our data also offer mechanistic insights into the reason why during fasting acylated ghrelin levels are not increased at a time when a marked increase in an orexigenic signal as important as acylated ghrelin will be expected.


Proceedings of the Nutrition Society | 2007

Peripheral tissue-brain interactions in the regulation of food intake.

Miguel López; Sulay Tovar; María J. Vázquez; Lynda M. Williams; Carlos Dieguez

More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the central nervous system sensed circulating levels of different metabolites, changing feeding behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in obesity and associated pathologies in developed countries has involved a substantial increase in the knowledge of the physiological and molecular mechanism regulating body mass. This effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin, as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The present review summarises research into energy balance, starting from the original classical hypotheses proposing metabolite sensing, through peripheral tissue-brain interactions and coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding regulation. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.


Obesity Facts | 2012

The Opioid System and Food Intake: Homeostatic and Hedonic Mechanisms

Ruben Nogueiras; Amparo Romero-Picó; María J. Vázquez; Marta G. Novelle; Miguel López; Carlos Dieguez

Opioids are important in reward processes leading to addictive behavior such as self-administration of opioids and other drugs of abuse including nicotine and alcohol. Opioids are also involved in a broadly distributed neural network that regulates eating behavior, affecting both homeostatic and hedonic mechanisms. In this sense, opioids are particularly implicated in the modulation of highly palatable foods, and opioid antagonists attenuate both addictive drug taking and appetite for palatable food. Thus, craving for palatable food could be considered as a form of opioid-related addiction. There are three main families of opioid receptors (µ, ĸ, and δ) of which µ-receptors are most strongly implicated in reward. Administration of selective µ-agonists into the NAcc of rodents induces feeding even in satiated animals, while administration of µ-antagonists reduces food intake. Pharmacological studies also suggest a role for ĸ- and δ-opioid receptors. Preliminary data from transgenic knockout models suggest that mice lacking some of these receptors are resistant to high-fat diet-induced obesity.


Neuroendocrinology | 2011

Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins.

Carlos Dieguez; María J. Vázquez; Amparo Romero; Miguel López; Ruben Nogueiras

The hypothalamus plays a crucial role in the regulation of food intake and energy expenditure. One of the main regulatory factors within the hypothalamus is AMP-activated protein kinase (AMPK), which is involved in a large number of biological actions including the modulation of energy balance. Leptin and ghrelin-induced changes in hypothalamic AMPK lead to important alterations in hypothalamic fatty acid metabolism. Furthermore, it is well known that the hypothalamus controls peripheral lipid metabolism through the sympathetic nervous system, and those actions are independent of food intake. In this short review, we highlight the main molecular pathways triggered by leptin and ghrelin altering both central and peripheral lipid metabolism and, therefore, controlling feeding behavior and energy expenditure.

Collaboration


Dive into the María J. Vázquez's collaboration.

Top Co-Authors

Avatar

Carlos Dieguez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ruben Nogueiras

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Miguel López

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Sulay Tovar

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

F. Chenlo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

R. Moreira

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerardo Pereira

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Luis M. Varela

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge