Maria Jerka-Dziadosz
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Jerka-Dziadosz.
Developmental Cell | 2009
Dorota Wloga; Danielle M. Webster; Krzysztof Rogowski; Marie-Hélène Bré; Nicolette Levilliers; Maria Jerka-Dziadosz; Carsten Janke; Scott T. Dougan; Jacek Gaertig
In most ciliated cell types, tubulin is modified by glycylation, a posttranslational modification of unknown function. We show that the TTLL3 proteins act as tubulin glycine ligases with chain-initiating activity. In Tetrahymena, deletion of TTLL3 shortened axonemes and increased their resistance to paclitaxel-mediated microtubule stabilization. In zebrafish, depletion of TTLL3 led to either shortening or loss of cilia in several organs, including the Kupffers vesicle and olfactory placode. We also show that, in vivo, glutamic acid and glycine ligases oppose each other, likely by competing for shared modification sites on tubulin. We propose that tubulin glycylation regulates the assembly and dynamics of axonemal microtubules and acts either directly or indirectly by inhibiting tubulin glutamylation.
Eukaryotic Cell | 2008
Dorota Wloga; Krzysztof Rogowski; Neeraj Sharma; Juliette van Dijk; Carsten Janke; Bernard Eddé; Marie-Hélène Bré; Nicolette Levilliers; Virginie Redeker; Jianming Duan; Martin A. Gorovsky; Maria Jerka-Dziadosz; Jacek Gaertig
ABSTRACT Tubulin undergoes glutamylation, a conserved posttranslational modification of poorly understood function. We show here that in the ciliate Tetrahymena, most of the microtubule arrays contain glutamylated tubulin. However, the length of the polyglutamyl side chain is spatially regulated, with the longest side chains present on ciliary and basal body microtubules. We focused our efforts on the function of glutamylation on the α-tubulin subunit. By site-directed mutagenesis, we show that all six glutamates of the C-terminal tail domain of α-tubulin that provide potential sites for glutamylation are not essential but are needed for normal rates of cell multiplication and cilium-based functions (phagocytosis and cell motility). By comparative phylogeny and biochemical assays, we identify two conserved tubulin tyrosine ligase (TTL) domain proteins, Ttll1p and Ttll9p, as α-tubulin-preferring glutamyl ligase enzymes. In an in vitro microtubule glutamylation assay, Ttll1p showed a chain-initiating activity while Ttll9p had primarily a chain-elongating activity. GFP-Ttll1p localized mainly to basal bodies, while GFP-Ttll9p localized to cilia. Disruption of the TTLL1 and TTLL9 genes decreased the rates of cell multiplication and phagocytosis. Cells lacking both genes had fewer cortical microtubules and showed defects in the maturation of basal bodies. We conclude that glutamylation on α-tubulin is not essential but is required for efficiency of assembly and function of a subset of microtubule-based organelles. Furthermore, the spatial restriction of modifying enzymes appears to be a major mechanism that drives differential glutamylation at the subcellular level.
Eukaryotic Cell | 2010
Dorota Wloga; Drashti Dave; Jennifer Meagley; Krzysztof Rogowski; Maria Jerka-Dziadosz; Jacek Gaertig
ABSTRACT In most eukaryotic cells, tubulin is subjected to posttranslational glutamylation, a conserved modification of unclear function. The glutamyl side chains form as branches of the primary sequence glutamic acids in two biochemically distinct steps: initiation and elongation. The length of the glutamyl side chain is spatially controlled and microtubule type specific. Here, we probe the significance of the glutamyl side chain length regulation in vivo by overexpressing a potent side chain elongase enzyme, Ttll6Ap, in Tetrahymena. Overexpression of Ttll6Ap caused hyperelongation of glutamyl side chains on the tubulin of axonemal, cortical, and cytoplasmic microtubules. Strikingly, in the same cell, hyperelongation of glutamyl side chains stabilized cytoplasmic microtubules and destabilized axonemal microtubules. Our observations suggest that the cellular outcomes of glutamylation are mediated by spatially restricted tubulin interactors of diverse nature.
Cytoskeleton | 2010
Maria Jerka-Dziadosz; Delphine Gogendeau; Catherine Klotz; Jean Cohen; Janine Beisson
Basal bodies which nucleate cilia and flagella, and centrioles which organize centrosomes share the same architecture characterized by the ninefold symmetry of their microtubular shaft. Among the conserved proteins involved in the biogenesis of the canonical 9‐triplet centriolar structures, Sas‐6 and Bld10 proteins have been shown to play central roles in the early steps of assembly and in establishment/stabilization of the ninefold symmetry. Using fluorescent tagged proteins and RNAi to study the localization and function of these two proteins in Paramecium, we focused on the early effects of their depletion, the consequences of their overexpression and their functional interdependence. We find that both genes are essential and their depletion affects cartwheel assembly and hence basal body duplication. We also show that, contrary to Sas6p, Bld10p is not directly responsible for the establishment of the ninefold symmetry, but is required not only for new basal body assembly and stability but also for Sas6p maintenance at mature basal bodies. Finally, ultrastructural analysis of cells overexpressing either protein revealed two types of early assembly intermediates, hub‐like structures and generative discs, suggesting a conserved scaffolding process.
Molecular Microbiology | 2008
Anna Krzywicka; Janine Beisson; Anne-Marie Keller; Jean Cohen; Maria Jerka-Dziadosz; Catherine Klotz
In this study, we report cloning, by functional complementation of the KIN241 gene involved in Paramecium cell morphogenesis, cortical organization and nuclear reorganization. This gene is predicted to encode a protein of a novel type, comprising a cyclophilin‐type, peptidyl‐prolyl isomerase domain, an RNA recognition motif, followed by a region rich in glutamate and lysine (EK domain) and a C‐terminal string of serines. As homologues of this protein are present in the genomes of Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana and Homo sapiens, the Kin241p predicted sequence defines a new family of proteins that we propose to call ‘CRIP’, for cyclophilin–RNA interacting protein. We demonstrate that, in Paramecium, Kin241p is localized in the nucleus and that deletion of some nuclear localization signals (NLSs) decreases transport of the protein into the nucleus. No Kin241‐1 protein is present in mutant cells, suggesting that the C‐terminal serine‐rich region is responsible for protein stability.
Journal of Cell Science | 2012
A Aubusson-Fleury; Michel Lemullois; Nicole Garreau de Loubresse; Chloé Laligné; Jean Cohen; Olivier Rosnet; Maria Jerka-Dziadosz; Janine Beisson
Summary Within the FOP family of centrosomal proteins, the conserved FOR20 protein has been implicated in the control of primary cilium assembly in human cells. To ascertain its role in ciliogenesis, we have investigated the function of its ortholog, PtFOR20p, in the multiciliated unicellular organism Paramecium. Using combined functional and cytological analyses, we found that PtFOR20p specifically localises at basal bodies and is required to build the transition zone, a prerequisite to their maturation and docking at the cell surface and hence to ciliogenesis. We also found that PtCen2p (one of the two basal body specific centrins, an ortholog of HsCen2) is required to recruit PtFOR20p at the developing basal body and to control its length. By contrast, the other basal-body-specific centrin PtCen3p is not needed for assembly of the transition zone, but is required downstream, for basal body docking. Comparison of the structural defects induced by depletion of PtFOR20p, PtCen2p or PtCen3p, respectively, illustrates the dual role of the transition zone in the biogenesis of the basal body and in cilium assembly. The multiple potential roles of the transition zone during basal body biogenesis and the evolutionary conserved function of the FOP proteins in microtubule membrane interactions are discussed.
Eukaryotic Cell | 2008
Dorota Wloga; I. Strzyżewska-Jówko; Jacek Gaertig; Maria Jerka-Dziadosz
ABSTRACT We describe phylogenetic and functional studies of three septins in the free-living ciliate Tetrahymena thermophila. Both deletion and overproduction of septins led to vacuolization of mitochondria, destabilization of the nuclear envelope, and increased autophagy. All three green fluorescent protein-tagged septins localized to mitochondria. Specific septins localized to the outer mitochondrial membrane, to septa formed during mitochondrial scission, or to the mitochondrion-associated endoplasmic reticulum. The only other septins known to localize to mitochondria are human ARTS and murine M-septin, both alternatively spliced forms of Sep4 (S. Larisch, Cell Cycle 3:1021-1023, 2004; S. Takahashi, R. Inatome, H. Yamamura, and S. Yanagi, Genes Cells 8:81-93, 2003). It therefore appears that septins have been recruited to mitochondrial functions independently in at least two eukaryotic lineages and in both cases are involved in apoptotic events.
Protist | 2001
Maria Jerka-Dziadosz; Izabela Strzyżewska-Jówko; Urszula Wojsa-Lugowska; Wanda Krawczyńska; Anna Krzywicka
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies - the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure. The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.
Development Genes and Evolution | 1985
Maria Jerka-Dziadosz
Analysis or the development of microtubular structures in the mirror-image doublet cell lines of a hypotrich ciliate,Paraurostyla weissei, revealed several modifications in standard morphogenesis. Ciliary primordia can be formed without prior disaggregation of the preformed marginal cirri, on the left instead of the right hand side of an old row. Two or more overlapping streak segments may originate from disaggregating old marginal cirri, giving rise to two or three cirral rows. Inverted marginal cirri occasionally develop de novo and can be propagated clonally. Thus the modifications in developmental processes concern the positioning of primordia, the number of forming structures and the polarity of these structures. The microtubular triplets in the basal bodies of normal and inverted cirri do not differ, indicating that the large-scale reversal of the overall pattern has no effect on the assembly of microtubular triplets. The study indicates that the control of cytotactic propagation of compound microtubular structures is either modified or partially suppressed in a morphogenetic field where the positional values along one of the main cellular axes (lateral) have been reversed.
Journal of Cell Biology | 2014
Domenico F. Galati; Stephanie Bonney; Zev Kronenberg; Christina Clarissa; Mark Yandell; Nels C. Elde; Maria Jerka-Dziadosz; Thomas H. Giddings; Joseph Frankel; Chad G. Pearson
DisAp is a novel kinetodesmal fiber component that is essential for force-dependent fiber elongation and the alignment of basal body orientation in multiciliary arrays.