Maria João Catalão
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria João Catalão.
Microbiology | 2008
Filipa Gil; Maria João Catalão; José Moniz-Pereira; Paula Leandro; Michael R. McNeil; Madalena Pimentel
dsDNA bacteriophages use the dual system endolysin-holin to achieve lysis of their bacterial host. In addition to these two essential genes, some bacteriophages encode additional proteins within their lysis module. In this report, we describe the activity of a protein encoded by gene lysB from the mycobacteriophage Ms6. lysB is localized within the lysis cassette, between the endolysin gene (lysA) and the holin gene (hol). Analysis of the deduced amino acid sequence of LysB revealed the presence of a conserved motif (Gly-Tyr-Ser-Gln-Gly) characteristic of enzymes with lipolytic activity. A blast search within the sequences of protein databases revealed significant similarities to other putative proteins that are encoded by mycobacteriophages only, indicating that LysB and those proteins may be specific to their mycobacterial hosts. A screening for His(6)-LysB activity on esterase and lipase substrates confirmed the lipolytic activity. Examination of the kinetic parameters of recombinant His(6)-LysB for the hydrolysis of p-nitrophenyl esters indicated that although this protein could use a wide range of chain length substrates (C(4)-C(18)), it presents a higher affinity for p-nitrophenyl esters of longer chain length (C(16) and C(18)). Using p-nitrophenyl butyrate as a substrate, the enzyme showed optimal activity at 23 degrees C and pH 7.5-8.0. Activity was increased in the presence of Ca(2+) and Mn(2+). To the best of our knowledge, this is the first description of a protein with lipolytic activity encoded within a bacteriophage.
PLOS ONE | 2011
Maria João Catalão; Catarina Milho; Filipa Gil; José Moniz-Pereira; Madalena Pimentel
Mycobacteriophages are dsDNA viruses that infect mycobacterial hosts. The mycobacteriophage Ms6 accomplishes lysis by producing two cell wall hydrolytic enzymes, Lysin A (LysA) that possesses a central peptidoglycan recognition protein (PGRP) super-family conserved domain with the amidase catalytic site, that cleaves the amide bond between the N-acetylmuramic acid and L-alanine residues in the oligopeptide crosslinking chains of the peptidoglycan and Lysin B (LysB) a mycolylarabinogalactan esterase that hydrolyzes the mycolic acids from the mycolyl-arabinogalactan-peptidoglycan complex. Examination of the endolysin (lysA) DNA sequence revealed the existence of an embedded gene (lysA 241) encoded in the same reading frame and preceded by a consensus ribosome-binding site. In the present work we show that, even though lysA is essential for Ms6 viability, phage mutants that express only the longer (Lysin384) or the shorter (Lysin241) endolysin are viable, but defective in the normal timing, progression and completion of host cell lysis. In addition, both endolysins have peptidoglycan hydrolase activity and demonstrated broad growth inhibition activity against various Gram-positive bacteria and mycobacteria.
Journal of Bacteriology | 2011
Maria João Catalão; Filipa Gil; José Moniz-Pereira; Madalena Pimentel
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.
eLife | 2014
Magda L. Atilano; Pedro M. Pereira; Filipa Vaz; Maria João Catalão; Patricia Reed; Inês Ramos Grilo; Rita G. Sobral; Petros Ligoxygakis; Mariana G. Pinho; Sergio R. Filipe
Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001
PLOS ONE | 2013
Mafalda X. Henriques; Maria João Catalão; Joana Figueiredo; João Paulo Gomes; Sergio R. Filipe
We have constructed a set of plasmids that allow efficient expression of both N- and C-terminal fusions of proteins of interest to fluorescent proteins mCherry, Citrine, CFP and GFP in the Gram-positive pathogen Streptococcus pneumoniae. In order to improve expression of the fluorescent fusions to levels that allow their detection by fluorescence microscopy, we have introduced a 10 amino acid tag, named i-tag, at the N-terminal end of the fluorescent proteins. This caused increased expression due to improved translation efficiency and did not interfere with the protein localization in pneumococcal bacteria. Localizing fluorescent derivatives of FtsZ, Wzd and Wze in dividing bacteria validated the developed tools. The availability of the new plasmids described in this work should greatly facilitate studies of protein localization in an important clinical pathogen.
Journal of Bacteriology | 2011
Maria João Catalão; Filipa Gil; José Moniz-Pereira; Madalena Pimentel
The intermolecular interactions of the mycobacteriophage Ms6 secretion chaperone with endolysin were characterized. The 384-amino-acid lysin (lysin(384))-binding domain was found to encompass the N-terminal region of Gp1, which is also essential for a lysis phenotype in Escherichia coli. In addition, a GXXXG-like motif involved in Gp1 homo-oligomerization was identified within the C-terminal region.
Viruses | 2017
Adriano Gigante; Cheri M. Hampton; Rebecca S. Dillard; Filipa Gil; Maria João Catalão; José Moniz-Pereira; Elizabeth R. Wright; Madalena Pimentel
All dsDNA phages encode two proteins involved in host lysis, an endolysin and a holin that target the peptidoglycan and cytoplasmic membrane, respectively. Bacteriophages that infect Gram-negative bacteria encode additional proteins, the spanins, involved in disruption of the outer membrane. Recently, a gene located in the lytic cassette was identified in the genomes of mycobacteriophages, which encodes a protein (LysB) with mycolyl-arabinogalactan esterase activity. Taking in consideration the complex mycobacterial cell envelope that mycobacteriophages encounter during their life cycle, it is valuable to evaluate the role of these proteins in lysis. In the present work, we constructed an Ms6 mutant defective on lysB and showed that Ms6 LysB has an important role in lysis. In the absence of LysB, lysis still occurs but the newly synthesized phage particles are deficiently released to the environment. Using cryo-electron microscopy and tomography to register the changes in the lysis phenotype, we show that at 150 min post-adsorption, mycobacteria cells are incompletely lysed and phage particles are retained inside the cell, while cells infected with Ms6wt are completely lysed. Our results confirm that Ms6 LysB is necessary for an efficient lysis of Mycobacterium smegmatis, acting, similarly to spanins, in the third step of the lysis process.
Viruses | 2018
Maria João Catalão; Madalena Pimentel
Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.
PLOS ONE | 2014
Maria João Catalão; Joana Figueiredo; Mafalda X. Henriques; João Paulo Gomes; Sergio R. Filipe
The understanding of how Gram-positive bacteria divide and ensure the correct localization of different molecular machineries, such as those involved in the synthesis of the bacterial cell surface, is crucial to design strategies to fight bacterial infections. In order to determine the correct subcellular localization of fluorescent proteins in Streptococcus pneumoniae, we have previously described tools to express derivatives of four fluorescent proteins, mCherry, Citrine, CFP and GFP, to levels that allow visualization by fluorescence microscopy, by fusing the first ten amino acids of the S. pneumoniae protein Wze (the i-tag), upstream of the fluorescent protein. Here, we report that these tools can also be used in other Gram-positive bacteria, namely Lactococcus lactis, Staphylococcus aureus and Bacillus subtilis, possibly due to optimized translation rates. Additionally, we have optimized the i-tag by testing the effect of the first ten amino acids of other pneumococcal proteins in the increased expression of the fluorescent protein Citrine. We found that manipulating the structure and stability of the 5′ end of the mRNA molecule, which may influence the accessibility of the ribosome, is determinant to ensure the expression of a strong fluorescent signal.
Fems Microbiology Reviews | 2013
Maria João Catalão; Filipa Gil; José Moniz-Pereira; Carlos São-José; Madalena Pimentel