Maria Julia Marinissen
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Julia Marinissen.
Trends in Pharmacological Sciences | 2001
Maria Julia Marinissen; J. Silvio Gutkind
G-protein-coupled receptors (GPCRs) constitute the largest family of cell-surface molecules involved in signal transmission. These receptors play key physiological roles and their dysfunction results in several diseases. Recently, it has been shown that many of the cellular responses mediated by GPCRs do not involve the sole stimulation of conventional second-messenger-generating systems, but instead result from the functional integration of an intricate network of intracellular signaling pathways. Effectors for GPCRs that are independent of G proteins have now also been identified, thus changing the conventional view of the GPCR-heterotrimeric-G-protein-associated effector. The emerging information is expected to help elucidate the most basic mechanism by which these receptors exert their numerous physiological roles, in addition to determining why the perturbation of their function results in many pathological conditions.
Molecular and Cellular Biology | 1999
Maria Julia Marinissen; Chiariello M; Pallante M; Gutkind Js
ABSTRACT The expression of the c-jun proto-oncogene is rapidly induced in response to mitogens acting on a large variety of cell surface receptors. The resulting functional activity of c-Jun proteins appears to be critical for cell proliferation. Recently, we have shown that a large family of G protein-coupled receptors (GPCRs), represented by the m1 muscarinic receptor, can initiate intracellular signaling cascades that result in the activation of mitogen-activated protein kinases (MAPK) and c-Jun NH2-terminal kinases (JNK) and that the activation of JNK but not of MAPK correlated with a remarkable increase in the expression of c-jun mRNA. Subsequently, however, we obtained evidence that GPCRs can potently stimulate the activity of the c-jun promoter through MEF2 transcription factors, which do not act downstream from JNK. In view of these observations, we set out to investigate further the nature of the signaling pathway linking GPCRs to the c-jun promoter. Utilizing NIH 3T3 cells, we found that GPCRs can activate the c-jun promoter in a JNK-independent manner. Additionally, we demonstrated that these GPCRs can elevate the activity of novel members of the MAPK family, including ERK5, p38α, p38γ, and p38δ, and that the activation of certain kinases acting downstream from MEK5 (ERK5) and MKK6 (p38α and p38γ) is necessary to fully activate the c-jun promoter. Moreover, in addition to JNK, ERK5, p38α, and p38γ were found to stimulate the c-jun promoter by acting on distinct responsive elements. Taken together, these results suggest that the pathway linking GPCRs to the c-junpromoter involves the integration of numerous signals transduced by a highly complex network of MAPK, rather than resulting from the stimulation of a single linear protein kinase cascade. Furthermore, our findings suggest that each signaling pathway affects one or more regulatory elements on the c-jun promoter and that the transcriptional response most likely results from the temporal integration of each of these biochemical routes.
Molecular and Cellular Biology | 2000
Chiariello M; Maria Julia Marinissen; Gutkind Js
ABSTRACT The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family implicated in cellular transformation. Enhanced expression of this protein has been shown to activate both the MAPK and the c-Jun N-terminal kinase (JNK) pathways and to stimulate the nuclear factor of activated T cells and NF-κB-dependent transcription. However, the nature of the normal functions of the Cot protein and the molecular mechanisms responsible for its oncogenic potential are still largely unknown. Here, we show that overexpression of the cot proto-oncogene is sufficient to stimulate the expression of c-jun and that, in turn, the activity of c-Jun is required for Cot-induced transformation. These observations prompted us to explore the molecular events by which Cot regulates c-jun expression. We found that Cot potently stimulates the activity of the c-jun promoter utilizing JNK-dependent and -independent pathways, the latter involving two novel members of the MAPK family, p38γ (ERK6) and ERK5. Molecularly, this activity was found to be dependent on the ability of Cot to activate, in vivo, members of each class of the MAPK kinase superfamily, including MEK, SEK, MKK6, and MEK5. Furthermore, the use of dominant interfering molecules revealed that Cot requires JNK, p38s, and ERK5 to stimulate the c-jun promoter fully and to induce neoplastic transformation. These findings indicate that Cot represents the first example of a serine/threonine kinase acting simultaneously on all known MAPK cascades. Moreover, these observations strongly suggest that the transforming ability of Cot results from the coordinated activation of these pathways, which ultimately converge on the regulation of the expression and activity of the product of the c-junproto-oncogene.
Molecular Cell | 2004
Maria Julia Marinissen; Mario Chiariello; Tamara Tanos; Ora Bernard; Shuh Narumiya; J. Silvio Gutkind
RhoA regulates the actin cytoskeleton and the expression of genes associated with cell proliferation. This includes c-fos and c-jun, which are members of the AP1 family of transcription factors that play a key role in normal and aberrant cell growth. Whereas RhoA stimulates the c-fos SRE by a recently elucidated mechanism that is dependent on actin treadmilling, how RhoA regulates c-jun is still poorly understood. We found that RhoA stimulates c-jun expression through ROCK, but independently from the ability of ROCK to promote actin polymerization. Instead, we found that ROCK activates JNK, which then phosphorylates c-Jun and ATF2 when bound to the c-jun promoter. Thus, ROCK represents a point of signal divergence downstream from RhoA, as it promotes actin reorganization and the consequent expression from the c-fos SRE, while a parallel pathway connects ROCK to JNK, thereby stimulating c-jun expression. Ultimately, these pathways converge in the nucleus to regulate AP1 activity.
Journal of Biological Chemistry | 2003
Joan Marc Servitja; Maria Julia Marinissen; Akrit Sodhi; Xosé R. Bustelo; J. Silvio Gutkind
The proto-oncogene c-Src has been implicated in the development and progression of a number of human cancers including those of colon and breast. Accumulating evidence indicates that activated alleles of Src may induce cell transformation through Ras-ERK-dependent and -independent pathways. Here we show that Rac1 activity is strongly elevated in Src-transformed cells and that this small G protein is a critical component of the pathway connecting oncogenic Src with cell transformation. We further show that Vav2 and the ubiquitously expressed Rac1 guanine nucleotide exchange factor Tiam1 are phosphorylated in tyrosine residues in cells transfected with active and oncogenic Src. Moreover, phosphorylation of Tiam1 in cells treated with pervanadate, a potent inhibitor of tyrosine phosphatases, was partially inhibited by the Src inhibitor SU6656. Using truncated mutants of Tiam1, we demonstrate that multiple sites can be tyrosine-phosphorylated by Src. Furthermore, Tiam1 cooperated with Src to induce activation of Rac1 in vivo and the formation of membrane ruffles. Similarly, activation of JNK and the c-jun promoter by Src were also potently increased by Tiam1. Together, these results suggest that Vav2 and Tiam1 may act as downstream effectors of Src, thereby regulating Rac1-dependent pathways that participate in Src-induced cell transformation.
Molecular and Cellular Biology | 2003
Paula Monje; Maria Julia Marinissen; J. Silvio Gutkind
ABSTRACT Polypeptide growth factors, such as platelet-derived growth factor (PDGF), promote the reinitiation of DNA synthesis and cell growth through multiple intracellular signaling pathways that converge in the nucleus to regulate the activity of transcription factors, thereby controlling the expression of growth-promoting genes. Among them, the AP-1 (activating protein-1) family of transcription factors, including c-Fos and c-Jun family members, plays a key role, as AP-1 activity is potently activated by PDGF and is required to stimulate cell proliferation. However, the nature of the pathways connecting PDGF receptors to AP-1 is still poorly defined. In this study, we show that PDGF regulates AP-1 by stimulating the expression and function of c-Fos through extracellular signal-regulated kinase (ERK). The latter involves the direct phosphorylation by ERK of multiple residues in the carboxyl-terminal transactivation domain of c-Fos, which results in its increased transcriptional activity. Interestingly, the phosphorylation of c-Fos by ERK was required for the ability of PDGF and serum to stimulate the activity of c-Fos as well as AP-1-dependent transcription. Furthermore, we provide evidence that the ERK-dependent activation of c-Fos is an integral component of the mitogenic pathway by which PDGF regulates normal and aberrant cell growth.
Nature Cell Biology | 2001
Mario Chiariello; Maria Julia Marinissen; J. Silvio Gutkind
Src family protein-tyrosine kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation and apoptosis. Surprisingly, these kinases also participate in mitogenic signalling by receptors that themselves exhibit an intrinsic protein-tyrosine kinase activity, inclu-ding those for platelet-derived growth factor (PDGF), epidermal growth factor and colony-stimulating factor-1. Indeed, Src kinases are strictly required for the nuclear expression of the c-myc proto-oncogene and thus for DNA synthesis in response to PDGF. However, the nature of the signalling pathways by which Src kinases participate in the induction of c-myc expression by tyrosine kinase receptors is still unknown. Here we show that PDGF enhances c-myc expression and stimulates the c-myc promoter in a Src-dependent manner, and that neither Ras nor the mitogen-activated protein kinase pathway mediate these effects. In contrast, we present evidence that PDGF stimulates Vav2 through Src, thereby initiating the activation of a Rac-dependent pathway that controls the expression of the c-myc proto-oncogene.
Molecular and Cellular Biology | 2002
Hua-Wei Chen; Maria Julia Marinissen; Su-Wan Oh; Xiu Chen; Michael B. Melnick; Norbert Perrimon; J. Silvio Gutkind; Steven X. Hou
ABSTRACT The Drosophila melanogaster JUN N-terminal kinase (DJNK) and DPP (decapentaplegic) signal transduction pathways coordinately regulate epithelial cell sheet movement during the process of dorsal closure in the embryo. By a genetic screen of mutations affecting dorsal closure in Drosophila, we have now identified a multidomain protein, connector of kinase to AP-1 (cka), that functions in the DJNK pathway and controls the localized expression of dpp in the leading-edge cells. We have also investigated how CKA acts. This unique molecule forms a complex with HEP (DJNKK), BSK (DJNK), DJUN, and DFOS. Complex formation activates BSK kinase, which in turn phosphorylates and activates DJUN and DFOS. These data suggest that CKA represents a novel molecule regulating AP-1 activity by organizing a molecular complex of kinases and transcription factors, thus coordinating the spatial-temporal expression of AP-1-regulated genes.
Journal of Biological Chemistry | 2003
Carlo Iavarone; Annunziata Catania; Maria Julia Marinissen; Roberta Visconti; Mario Acunzo; Carolina Tarantino; M. Stella Carlomagno; Carmelo B. Bruni; J. Silvio Gutkind; Mario Chiariello
Pro-inflammatory cytokines, environmental stresses, as well as receptor tyrosine kinases regulate the activity of JNK. In turn, JNK phosphorylates Jun members of the AP-1 family of transcription factors, thereby controlling processes as different as cell growth, differentiation, and apoptosis. Still, very few targets of the JNK-Jun pathway have been identified. Here we show that JNK is required for the induction of c-myc expression by PDGF. Furthermore, we identify a phylogenetically conserved AP-1-responsive element in the promoter of the c-myc proto-oncogene that recruits in vivo the c-Jun and JunD AP-1 family members and controls the PDGF-dependent transactivation of the c-myc promoter. These findings suggest the existence of a novel biochemical route linking tyrosine kinase receptors, such as those for PDGF, and c-myc expression through JNK activation of AP-1 transcription factors. They also provide a novel potential mechanism by which both JNK and Jun proteins may exert either their proliferative or apoptotic potential by stimulating the expression of the c-myc proto-oncogene.
Journal of Biological Chemistry | 2007
Martín Mj; Tamara Tanos; García Ab; Martin D; Gutkind Js; Omar A. Coso; Maria Julia Marinissen
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Gα12/13 family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Gα12, Gα13, or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Gα13 or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Gα12/13/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.