Maria Kasper
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Kasper.
Nature Genetics | 2008
Viljar Jaks; Nick Barker; Maria Kasper; Johan H. van Es; Hugo J. Snippert; Hans Clevers; Rune Toftgård
In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair follicles. Here we show that Lgr5+ cells comprise an actively proliferating and multipotent stem cell population able to give rise to new hair follicles and maintain all cell lineages of the hair follicle over long periods of time. Lgr5+ progeny repopulate other stem cell compartments in the hair follicle, supporting the existence of a stem or progenitor cell hierarchy. By marking Lgr5+ cells during trafficking through the lower outer root sheath, we show that these cells retain stem cell properties and contribute to hair follicle growth during the next anagen. Expression analysis suggests involvement of autocrine Hedgehog signaling in maintaining the Lgr5+ stem cell population.
Science | 2010
Hugo J. Snippert; Andrea Haegebarth; Maria Kasper; Viljar Jaks; Johan H. van Es; Nick Barker; Marc van de Wetering; Maaike van den Born; Harry Begthel; Robert G.J. Vries; Daniel E. Stange; Rune Toftgård; Hans Clevers
Hair Today, Skin Tomorrow The epidermis of mammals contains hair follicles, sebaceous glands, and interfollicular epidermis, but it has not been clear how the development and repair of these structures is regulated. Snippert et al. (p. 1385) show that a stem-cell cluster in the hair follicle, characterized by the expression of Lgr6, a close homolog of the Lgr5 marker for stem cells in the small intestine and colon, resides directly above the hair bulge and gives rise to all cell lineages of the skin. Skin wounds in adult mice are repaired by Lgr6 stem cells in the hair follicles that flank the damage. After hair morphogenesis, Lgr6 stem cells give rise to epidermal and sebaceous gland lineages to generate fully differentiated new skin. Skin wounds can be repaired by primitive stem cells into fully differentiated tissue, complete with hairs and sebaceous glands. Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.
Nature Methods | 2014
Saiful Islam; Amit Zeisel; Simon Joost; Gioele La Manno; Pawel Zajac; Maria Kasper; Peter Lönnerberg; Sten Linnarsson
Single-cell RNA sequencing (RNA-seq) is a powerful tool to reveal cellular heterogeneity, discover new cell types and characterize tumor microevolution. However, losses in cDNA synthesis and bias in cDNA amplification lead to severe quantitative errors. We show that molecular labels—random sequences that label individual molecules—can nearly eliminate amplification noise, and that microfluidic sample preparation and optimized reagents produce a fivefold improvement in mRNA capture efficiency.
Cancer Research | 2004
Gerhard Regl; Maria Kasper; Harald Schnidar; Thomas Eichberger; Graham W. Neill; Michael P. Philpott; Harald Esterbauer; Cornelia Hauser-Kronberger; Anna-Maria Frischauf; Fritz Aberger
Aberrant activation of the Hedgehog (HH)/GLI signaling pathway has been implicated in the development of basal cell carcinoma (BCC). The zinc finger transcription factors GLI1 and GLI2 are considered mediators of the HH signal in epidermal cells, although their tumorigenic nature and their relative contribution to tumorigenesis are only poorly understood. To shed light on the respective role of these transcription factors in epidermal neoplasia, we screened for genes preferentially regulated either by GLI1 or GLI2 in human epidermal cells. We show here that expression of the key antiapoptotic factor BCL2 is predominantly activated by GLI2 compared with GLI1. Detailed promoter analysis and gel shift assays identified three GLI binding sites in the human BCL2 cis-regulatory region. We found that one of these binding sites is critical for conferring GLI2-specific activation of the human BCL2 promoter and that the selective induction of BCL2 expression depends on the zinc finger DNA binding domain of GLI2. In vivo, GLI2 and BCL2 were coexpressed in the outer root sheath of hair follicles and BCC and in plasma cells that infiltrated BCC tumor islands. On the basis of the latter observation, we analyzed plasma cell-derived tumors and found strong expression of GLI2 and BCL2 in neoplastic cells of plasmacytoma patients, implicating HH/GLI signaling in the development of plasma cell-derived malignancies. The results reveal a central role for GLI2 in activating the prosurvival factor BCL2, which may represent an important mechanism in the development or maintenance of cancers associated with inappropriate HH signaling.
Molecular and Cellular Biology | 2006
Maria Kasper; Harald Schnidar; Graham W. Neill; Michaela Hanneder; Stefan Klingler; Leander Blaas; Carmen Schmid; Cornelia Hauser-Kronberger; Gerhard Regl; Michael P. Philpott; Fritz Aberger
ABSTRACT Hedgehog (HH)/GLI signaling plays a critical role in epidermal development and basal cell carcinoma. Here, we provide evidence that epidermal growth factor receptor (EGFR) signaling modulates the target gene expression profile of GLI transcription factors in epidermal cells. Using expression profiling and quantitative reverse transcriptase PCR, we identified a set of 19 genes whose transcription is synergistically induced by GLI1 and parallel EGF treatment. Promoter studies of a subset of GLI/EGF-regulated genes, including the genes encoding interleukin-1 antagonist IL1R2, Jagged 2, cyclin D1, S100A7, and S100A9, suggest convergence of EGFR and HH/GLI signaling at the level of promoters of selected direct GLI target genes. Inhibition of EGFR and MEK/ERK but not of phosphatidylinositol 3-kinase/AKT abrogated synergistic activation of GLI/EGF target genes, showing that EGFR can signal via RAF/MEK/ERK to cooperate with GLI proteins in selective target gene regulation. Coexpression of the GLI/EGF target IL1R2, EGFR, and activated ERK1/2 in human anagen hair follicles argues for a cooperative role of EGFR and HH/GLI signaling in specifying the fate of outer root sheath (ORS) cells. We also show that EGF treatment neutralizes GLI-mediated induction of epidermal stem cell marker expression and provide evidence that EGFR signaling is essential for GLI-induced cell cycle progression in epidermal cells. The results suggest that EGFR signaling modulates GLI target gene profiles which may play an important regulatory role in ORS specification, hair growth, and possibly cancer.
Oncogene | 2002
Gerhard Regl; Graham W. Neill; Thomas Eichberger; Maria Kasper; Mohammed S. Ikram; Josef Koller; Helmut Hintner; Anthony G. Quinn; Anna-Maria Frischauf; Fritz Aberger
Transgenic mouse models have provided evidence that activation of the zinc-finger transcription factor GLI1 by Hedgehog (Hh)-signalling is a key step in the initiation of the tumorigenic programme leading to Basal Cell Carcinoma (BCC). However, the downstream events underlying Hh/GLI-induced BCC development are still obscure. Using in vitro model systems to analyse the effect of Hh/GLI-signalling in human keratinocytes, we identified a positive feedback mechanism involving the zinc finger transcription factors GLI1 and GLI2. Expression of GLI1 in human keratinocytes induced the transcriptional activator isoforms GLI2α and GLI2β. Both isoforms were also shown to be expressed at elevated levels in 21 BCCs compared to normal skin. Detailed time course experiments monitoring the transcriptional response of keratinocytes either to GLI1 or to GLI2 suggest that GLI1 is a direct target of GLI2, while activation of GLI2 by GLI1 is likely to be indirect. Furthermore, expression of either GLI2 or GLI1 led to an increase in DNA-synthesis in confluent human keratinocytes. Taken together, these results suggest an important role of the positive GLI1-GLI2 feedback loop in Hh-mediated epidermal cell proliferation.
Cancer Research | 2009
Harald Schnidar; Markus Eberl; Stefan Klingler; Doris Mangelberger; Maria Kasper; Cornelia Hauser-Kronberger; Gerhard Regl; Renate Kroismayr; Richard Moriggl; Maria Sibilia; Fritz Aberger
Persistent activation of the Hedgehog (HH)/GLI signaling pathway has been implicated in the development of a number of human cancers. The GLI zinc finger transcription factors act at the end of the HH signaling cascade to control gene expression, and recent studies have shown that the activity of GLI proteins can be additionally modified by integration of distinct signals, such as the MEK/extracellular signal-regulated kinase (ERK) and phosphinositide-3 kinase (PI3K)/AKT pathway. However, little is known about the identity of the upstream activators of these HH/GLI interacting signaling pathways in cancer. Here, we provide evidence that integration of the HH/GLI and epidermal growth factor receptor (EGFR) pathway synergistically induces oncogenic transformation, which depends on EGFR-mediated activation of the RAS/RAF/MEK/ERK but not of the PI3K/AKT pathway. EGFR/MEK/ERK signaling induces JUN/activator protein 1 activation, which is essential for oncogenic transformation, in combination with the GLI activator forms GLI1 and GLI2. Furthermore, pharmacologic inhibition of EGFR and HH/GLI efficiently reduces growth of basal cell carcinoma (BCC) cell lines derived from mice with activated HH/GLI signaling. The results identify the synergistic integration of GLI activator function and EGFR signaling as a critical step in oncogenic transformation and provide a molecular basis for therapeutic opportunities relying on combined inhibition of the HH/GLI and EGFR/MEK/ERK/JUN pathway in BCC.
Cell Metabolism | 2016
Åsa Segerstolpe; Athanasia Palasantza; Pernilla Eliasson; Eva-Marie Andersson; Anne-Christine Andréasson; Xiaoyan Sun; Simone Picelli; Alan Sabirsh; Maryam Clausen; Magnus K. Bjursell; David M. Smith; Maria Kasper; Carina Ämmälä; Rickard Sandberg
Summary Hormone-secreting cells within pancreatic islets of Langerhans play important roles in metabolic homeostasis and disease. However, their transcriptional characterization is still incomplete. Here, we sequenced the transcriptomes of thousands of human islet cells from healthy and type 2 diabetic donors. We could define specific genetic programs for each individual endocrine and exocrine cell type, even for rare δ, γ, ε, and stellate cells, and revealed subpopulations of α, β, and acinar cells. Intriguingly, δ cells expressed several important receptors, indicating an unrecognized importance of these cells in integrating paracrine and systemic metabolic signals. Genes previously associated with obesity or diabetes were found to correlate with BMI. Finally, comparing healthy and T2D transcriptomes in a cell-type resolved manner uncovered candidates for future functional studies. Altogether, our analyses demonstrate the utility of the generated single-cell gene expression resource.
Experimental Cell Research | 2010
Viljar Jaks; Maria Kasper; Rune Toftgård
Recent studies on stem cells in the adult hair follicle (HF) have uncovered a veritable menagerie of exceptionally diverse and dynamic keratinocytes with stem cell properties located in distinct regions of the HF. Although endowed with specific functions during normal hair follicle maintenance, the majority of these cells can act as multipotent stem cells in stress situations, such as physical injury, which argues for an unanticipated degree of plasticity of these cells. This review provides an overview of the different epithelial stem cell populations, identified in the mouse HF, and their relationships with one another, and envisions possible cellular mechanisms underlying normal HF maintenance and skin regeneration.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Maria Kasper; Viljar Jaks; Alexandra Are; Åsa Bergström; Anja Schwäger; Jessica Svärd; Stephan Teglund; Nick Barker; Rune Toftgård
Chronic wounds and acute trauma constitute well-established risk factors for development of epithelial-derived skin tumors, although the underlying mechanisms are largely unknown. Basal cell carcinomas (BCCs) are the most common skin cancers displaying a number of features reminiscent of hair follicle (HF)-derived cells and are dependent on deregulated Hedgehog (Hh)/GLI signaling. Here we show, in a mouse model conditionally expressing GLI1 and in a model with homozygous inactivation of Ptch1, mimicking the situation in human BCCs, that the wound environment accelerates the initiation frequency and growth of BCC-like lesions. Lineage tracing reveals that both oncogene activation and wounding induce emigration of keratinocytes residing in the lower bulge and the nonpermanent part of the HFs toward the interfollicular epidermis (IFE). However, only oncogene activation in combination with a wound environment enables the participation of such cells in the initiation of BCC-like lesions at the HF openings and in the IFE. We conclude that, in addition to the direct enhancement of BCC growth, the tumor-promoting effect of the wound environment is due to recruitment of tumor-initiating cells originating from the neighboring HFs, establishing a link between epidermal wounds and skin cancer risk.