Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Kokkinopoulou is active.

Publication


Featured researches published by Maria Kokkinopoulou.


Journal of Cell Science | 2017

Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP

Werner E. G. Müller; Shunfeng Wang; Meik Neufurth; Maria Kokkinopoulou; Qingling Feng; Heinz C. Schröder; Xiaohong Wang

ABSTRACT Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5′)P5(5′)A were performed. We found that ADP formation in the extracellular space occurs after enzymatic ATP synthesis. After exposure to polyP, a significant increase of the ADP level was observed, which is likely to be been catalyzed by ALP. This increase is not due to an intensified ATP release via exocytosis. The ATP level in the extracellular space of SaOS-2 cells is strongly increased in response to polyP, very likely mediated by the AK. We propose that the ALP and AK enzymes are involved in the extracellular ADP and ATP synthesis. Summary: Polyphosphate is a prime candidate for the compound that serves as a donor for the formation of extracellular ‘high-energy’ bonds during the formation of extracellular ATP and ADP, and hence can act as a metabolic fuel.


PLOS ONE | 2017

Uptake of polyphosphate microparticles in vitro (SaOS-2 and HUVEC cells) followed by an increase of the intracellular ATP pool size

Werner E. G. Müller; Shunfeng Wang; Matthias Wiens; Meik Neufurth; Maximilian Ackermann; Dinko Relkovic; Maria Kokkinopoulou; Qingling Feng; Heinz C. Schröder; Xiaohong Wang

Recently two approaches were reported that addressed a vitally important problem in regenerative medicine, i. e. the successful treatment of wounds even under diabetic conditions. Accordingly, these studies with diabetic rabbits [Sarojini et al. PLoS One 2017, 12(4):e0174899] and diabetic mice [Müller et al. Polymers 2017, 9, 300] identified a novel (potential) target for the acceleration of wound healing in diabetes. Both studies propose a raise of the intracellular metabolic energy status via exogenous administration either of ATP, encapsulated into lipid vesicles, or of polyphosphate (polyP) micro-/nanoparticles. Recently this physiological polymer, polyP, was found to release metabolic energy in form of ATP into both the extra- and also intra-cellular space. In the present work the uptake mechanism of the amorphous polyP microparticles “Ca-polyP-MP” has been described and found to be a clathrin-dependent endocytosis import, based on inhibition studies with the inhibitor trifluoperazine, which blocks the clathrin-dependent endocytosis import. The experiments had been performed with SaOS-2 cells, by studying the uptake and distribution of the electron-dense particles into the cells, and with HUVEC cells, for analysis of the intracellular accumulation of polyP, visualized by fluorescent staining of polyP. Concurrently with the uptake of particular polyP the intracellular ATP level increased as well. In contrast to “Ca-polyP-MP” the soluble polyP, administered as “Na-polyP[Ca2+]”, did not cause an increase in the intracellular Ca2+ level, suggesting a different mode of action of these two forms of polyP. Based on existing data on the effect of polyP and ATP on the induction of vascularization during wound repair, both groups (Sarojini et al. and Müller et al.) propose that the acceleration of wound repair is based on an increased metabolic energy supply directly to the regenerating wound area.


Nature Nanotechnology | 2018

Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona

Manuel Tonigold; Johanna Simon; Diego Estupiñán; Maria Kokkinopoulou; Jonas Reinholz; Ulrike Kintzel; Anke Kaltbeitzel; Patricia Renz; Matthias P. Domogalla; Kerstin Steinbrink; Ingo Lieberwirth; Daniel Crespy; Katharina Landfester; Volker Mailänder

To promote drug delivery to exact sites and cell types, the surface of nanocarriers is functionalized with targeting antibodies or ligands, typically coupled by covalent chemistry. Once the nanocarrier is exposed to biological fluid such as plasma, however, its surface is inevitably covered with various biomolecules forming the protein corona, which masks the targeting ability of the nanoparticle. Here, we show that we can use a pre-adsorption process to attach targeting antibodies to the surface of the nanocarrier. Pre-adsorbed antibodies remain functional and are not completely exchanged or covered by the biomolecular corona, whereas coupled antibodies are more affected by this shielding. We conclude that pre-adsorption is potentially a versatile, efficient and rapid method of attaching targeting moieties to the surface of nanocarriers.Antibody pre-adsorption on the nanocarrier surface is a mild modification strategy that preserves antibody functionality and targeting ability.


Acta Biomaterialia | 2018

Beyond the protein corona – lipids matter for biological response of nanocarriers

Julius Müller; Domenik Prozeller; Artur Ghazaryan; Maria Kokkinopoulou; Volker Mailänder; Svenja Morsbach; Katharina Landfester

The interaction of nanocarriers with blood plasma components influences the biological response, and therefore, it needs to be controlled. Whereas protein adsorption to nanocarriers has been investigated to a large extent, the role of lipid interaction for drug delivery and its biological effect is not yet clear. However, lipids represent an important constituent of blood plasma and are usually bound in the form of lipoproteins. Because already for many nanocarrier systems an enrichment of apolipoproteins in their protein corona was reported, we examine the interaction of lipoproteins with nanocarriers. If interaction occurs in terms of lipoprotein adsorption, two scenarios are possible: adsorption of intact lipoprotein complexes or disintegration of the complexes with adsorption of the single components. To investigate the interaction and clarify which scenario occurs, polymeric model nanoparticles and different lipoprotein types have been studied by isothermal titration calorimetry, transmission electron microscopy, and other methods. Our data indicate that upon contact with polymeric nanoparticles, disintegration of lipoproteins and adsorption of lipids occurs. Further, the effect of lipoprotein adsorption on cell uptake has been examined, and a major effect of the lipoproteins has been found. STATEMENT OF SIGNIFICANCE It is now well accepted that nanomaterials developed as diagnostic or therapeutic carrier systems need to be well characterized in terms of biological responses inside an organism. Many studies have already shown that proteins adsorb to the surface of a nanomaterial and create a new interface that define the identity of the material. However, the presence of other surface-active components of the blood plasma and how they interact with nanomaterials has been much less investigated. Thus, this study aims at providing a significant contribution to understanding the interaction mechanism between lipoproteins and nanomaterials. Since lipoproteins transport a high amount of lipids, which are surface-active molecules, the demonstrated interactions can go as far as complete lipoprotein disintegration.


RSC Advances | 2018

Gold nanocolloid–protein interactions and their impact on β-sheet amyloid fibril formation

Heloise R. Barros; Maria Kokkinopoulou; Izabel C. Riegel-Vidotti; Katharina Landfester; Héloïse Thérien-Aubin

The influence of the presence of small molecules and nanoparticles on the mechanism of amyloid fibril formation has attracted attention because amyloid protein fibrils are associated with degenerative diseases. Here, we studied the interaction between gold nanoparticles (AuNPs) and a model protein (lysozyme). Both the formation of amyloid fibrils in the presence of gold nanoparticles, as well as the interaction between lysozyme and the amyloid fibrils with AuNPs, were investigated to gain an understanding of the distinct behaviour of lysozyme in its fibrillar and globular form. It was observed that the presence of AuNPs delayed the unfolding of α-helixes present in the globular lysozyme and the formation of the amyloid fibrils. However, the addition of AuNPs was also associated with a larger amount of β-sheet structures in the system once equilibrium was reached. Furthermore, the results showed that the driving force of the interaction between AuNPs and lysozyme in its fibrillar and globular forms was significantly different, and that the interaction of AuNPs with the preformed lysozyme amyloid fibrils led to a structural change in the protein.


Angewandte Chemie | 2018

FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles

Lutz Nuhn; Simon Van Herck; Andreas Best; Kim Deswarte; Maria Kokkinopoulou; Ingo Lieberwirth; Kaloian Koynov; Bart N. Lambrecht; Bruno G. De Geest

Degradable synthetic crosslinking is a versatile strategy to harness nanomaterials against disassembly in a complex physiological medium prompted by dilution effects or competitive interaction. In particular, chemical bonds such as ketals that are stable at physiological conditions but are cleaved in response to disease-mediated or intracellular conditions (e.g., a mildly acidic pH) are of great relevance for biomedical applications. Despite the range of spectroscopic or chromatographic analyses methods that allow chemical degradation in solution to be assessed, it is much less straightforward to interrogate synthetic nanomaterials for their degradation state when located inside a living organism. We demonstrate a method based on FRET analysis to monitor intracellular disassembly of block-copolymer-derived nanoparticles engineered with a FRET couple on separate polymer chains, which after self-assembly are covalently crosslinked with a pH-sensitive ketal-containing crosslinker.


Nanoscale | 2018

Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions

Johanna Simon; Laura K. Müller; Maria Kokkinopoulou; Ingo Lieberwirth; Svenja Morsbach; Katharina Landfester; Volker Mailänder

Formation of the biomolecular corona ultimately determines the successful application of nanoparticles in vivo. Adsorption of biomolecules such as proteins is an inevitable process that takes place instantaneously upon contact with physiological fluid (e.g. blood). Therefore, strategies are needed to control this process in order to improve the properties of the nanoparticles and to allow targeted drug delivery. Here, we show that the design of the protein corona by a pre-formed protein corona with tailored properties enables targeted cellular interactions. Nanoparticles were pre-coated with immunoglobulin depleted plasma to create and design a protein corona that reduces cellular uptake by immune cells. It was proven that a pre-formed protein corona remains stable even after nanoparticles were re-introduced to plasma. This opens up the great potential to exploit protein corona formation, which will significantly influence the development of novel nanomaterials.


Acta Biomaterialia | 2018

Protein machineries defining pathways of nanocarrier exocytosis and transcytosis

Jonas Reinholz; Christopher Diesler; Susanne Schöttler; Maria Kokkinopoulou; Sandra Ritz; Katharina Landfester; Volker Mailänder

The transport of nanocarriers through barriers like the gut in a living organism involves the transcytosis of these nanocarriers through the cell layer dividing two compartments. Understanding how this process works is not only essential to further developing strategies for a more effective nanocarrier transport system but also for providing fundamental insights into the barrier function as a means of protection against micro- and nanoplastics in the food chain. We therefore set out to investigate the different uptake mechanisms, intracellular trafficking and the routes for exocytosis for small polystyrene nanoparticles (PS-NPs ca. 100 nm) as mimicking nanocarriers in a Caco-2 cell model for gut-blood transition. We used label-free, quantitative mass spectrometry (MS) for determining the proteome that adhered to transversed nanoparticles. From this rich proteomics dataset, as well as previous studies, we generated stable-transfected Caco-2 cell lines carrying the green fluorescent protein (GFP) coupled to proteins of interest for uptake, early, late and exocytotic endosomes. We detected the spatial and temporal overlap of such marked endosomes with the nanocarrier signal in confocal laser scanning and super-resolution microscopy. There was a clear distinction in the time course of nanoparticle trafficking between groups of proteins for endocytosis, intracellular storage and putatively transcytosis and we identified several key transcytotic markers like Rab3 and Copine1. Moreover, we postulate the necessity of a certain protein composition on endosomes for successful transcytosis of nanocarriers. Finally, we define the two-sided impasse of the lysosome as a dead end for nano-plastic and the limit of nanocarriers in the 100 nm range. STATEMENT OF SIGNIFICANCE Here we focus on mechanisms of transcytosis and how we can follow these with methods not used before. First, we use mass spectrometry of transcytosed nanoparticles to pick proteins of the transcytosis machinery describing key proteins involved. We can detect the complex mixtures of proteins. As this is a dynamic process involving whole families of proteins interacting with each other and as this is an orchestrated process we coined the term protein machineries for this active interplay. By genetically modifying the proteins attaching GFP we are able to follow the transcytosis pathway. We evaluate the process in a quantitative manner over time. This reveals that the most obvious obstacle to transcytosis is a routing of the nanocarriers to the lysosomes.


ACS Applied Materials & Interfaces | 2018

Colloidally Confined Crystallization of Highly Efficient Ammonium Phosphomolybdate Catalysts

Alice Antonello; Cesare Benedetti; Francisco Pérez-Pla; Maria Kokkinopoulou; Katrin Kirchhoff; Viktor Fischer; Katharina Landfester; Silvia Gross; Rafael Muñoz-Espí

Nanodroplets in inverse miniemulsions provide a colloidal confinement for the crystallization of ammonium phosphomolybdate (APM), influencing the resulting particle size. The effects of the space confinement are investigated by comparing the crystallization of analogous materials both in miniemulsion and in bulk solution. Both routes result in particles with a rhombododecahedral morphology, but the ones produced in miniemulsion have sizes between 40 and 90 nm, 3 orders of magnitude smaller than the ones obtained in bulk solution. The catalytic activity of the materials is studied by taking the epoxidation of cis-cyclooctene as a model reaction. The miniemulsion route yields APM particles catalytically much more active than analogous samples produced in bulk solution, which can be explained by their higher dispersibility in organic solvents, their higher surface area, and their higher porosity. Inorganic phosphate salt precursors are compared with organic phosphate sources. APM nanoparticles prepared in miniemulsion from d-glucose-6-phosphate and O-phospho-dl-serine yield a conversion in the epoxidation reaction of more than 90% after only 1 h, compared to 30% for materials prepared in bulk solution. In addition, the catalysts prepared in miniemulsion display a promising recyclability.


The American Journal of Chinese Medicine | 2017

Two-Armed Activation of Bone Mineral Deposition by the Flavones Baicalin and Baicalein, Encapsulated in Polyphosphate Microparticles

Xiaohong Wang; Yue-Wei Guo; Emad Tolba; Maria Kokkinopoulou; Matthias Wiens; Heinz C. Schröder; Werner E. G. Müller

In this study, we investigated the effect of the two flavonoids, baicalin (baicalein 7-O-[Formula: see text]- d-glucuronic acid) and its aglycone, baicalein (5,6,7-trihydroxyflavone), after encapsulation into amorphous calcium polyphosphate (Ca-polyP) microparticles on mineralization of primary human osteoblasts (phOSB). Both flavonoids, which come from root extracts of Scutellaria baicalensis Georgi, are used in Traditional Chinese Medicine, and are nontoxic in cells up to a concentration of 3[Formula: see text][Formula: see text]g/ml. The morphogenetically active, energy-rich Ca-polyP particles with a stoichiometric P:Ca ratio of 1:2 are degraded by cellular alkaline phosphatase (ALP) to ortho-phosphate used for bone hydroxyapatite formation. Here we show that the flavone-loaded Ca-polyP microparticles are readily taken up by phOSB, resulting in the accumulation of polyP around the nuclei and the formation of intracellular vesicles containing the ALP. In addition, we demonstrate that baicalin/baicalein causes a rise of the intracellular calcium [Ca[Formula: see text]]i a level which markedly is augmented after encapsulation into Ca-polyP, through activation of the phospholipase C. Moreover, both flavones, either alone or associated with Ca-polyP microparticles, upregulate the expression of the osteoblast calcium efflux channel, the plasma membrane Ca[Formula: see text]-ATPase (PMCA), while the expression of ALP, which promotes bone mineralization, is induced by Ca-polyP and by the flavones only if present in the Ca-polyP-microparticle-associated form. As a result, the extent of bone mineralization is markedly enhanced. Based on the two-armed activating function, new applications of baicalin/baicalein as a component of nutriceuticals for osteoporosis prevention or bone implants can be envisaged.

Collaboration


Dive into the Maria Kokkinopoulou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge