Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria L. Allende is active.

Publication


Featured researches published by Maria L. Allende.


Nature | 2004

Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1

Mehrdad Matloubian; Charles G. Lo; Guy Cinamon; Matthew J. Lesneski; Ying Xu; Volker Brinkmann; Maria L. Allende; Richard L. Proia; Jason G. Cyster

Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720, inhibits lymphocyte emigration from lymphoid organs, and phosphorylated FTY720 binds and activates four of the five known sphingosine-1-phosphate (S1P) receptors. However, the role of S1P receptors in normal immune cell trafficking is unclear. Here we show that in mice whose haematopoietic cells lack a single S1P receptor (S1P1; also known as Edg1) there are no T cells in the periphery because mature T cells are unable to exit the thymus. Although B cells are present in peripheral lymphoid organs, they are severely deficient in blood and lymph. Adoptive cell transfer experiments establish an intrinsic requirement for S1P1 in T and B cells for lymphoid organ egress. Furthermore, S1P1-dependent chemotactic responsiveness is strongly upregulated in T-cell development before exit from the thymus, whereas S1P1 is downregulated during peripheral lymphocyte activation, and this is associated with retention in lymphoid organs. We find that FTY720 treatment downregulates S1P1, creating a temporary pharmacological S1P1-null state in lymphocytes, providing an explanation for the mechanism of FTY720-induced lymphocyte sequestration. These findings establish that S1P1 is essential for lymphocyte recirculation and that it regulates egress from both thymus and peripheral lymphoid organs.


Journal of Biological Chemistry | 2001

Mice Expressing Only Monosialoganglioside GM3 Exhibit Lethal Audiogenic Seizures

Hiromichi Kawai; Maria L. Allende; Ryuichi Wada; Mari Kono; Kazunori Sango; Chu-Xia Deng; Tsuyoshi Miyakawa; Jacqueline N. Crawley; Norbert Werth; Uwe Bierfreund; Konrad Sandhoff; Richard L. Proia

Gangliosides are a family of glycosphingolipids that contain sialic acid. Although they are abundant on neuronal cell membranes, their precise functions and importance in the central nervous system (CNS) remain largely undefined. We have disrupted the gene encoding GD3 synthase (GD3S), a sialyltransferase expressed in the CNS that is responsible for the synthesis of b-series gangliosides. GD3S−/− mice, even with an absence of b-series gangliosides, appear to undergo normal development and have a normal life span. To further restrict the expression of gangliosides, the GD3S mutant mice were crossbred with mice carrying a disrupted GalNAcT gene encoding β1,4-N-acetylgalactosaminyltransferase. These double mutant mice expressed GM3 as their major ganglioside. In contrast to the single mutant mice, the double mutants displayed a sudden death phenotype and were extremely susceptible to induction of lethal seizures by sound stimulus. These results demonstrate unequivocally that gangliosides play an essential role in the proper functioning of the CNS.


Nature Immunology | 2008

The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics

Levi Ledgerwood; Girdhari Lal; Nan Zhang; Alexandre Garin; Steven J. Esses; Florent Ginhoux; Miriam Merad; Helene Peche; Sergio A. Lira; Yaozhong Ding; Yu Yang; Xingxuan He; Edward H. Schuchman; Maria L. Allende; Jordi Ochando; Jonathan S. Bromberg

Although much is known about the migration of T cells from blood to lymph nodes, less is known about the mechanisms regulating the migration of T cells from tissues into lymph nodes through afferent lymphatics. Here we investigated T cell egress from nonlymphoid tissues into afferent lymph in vivo and developed an experimental model to recapitulate this process in vitro. Agonism of sphingosine 1-phosphate receptor 1 inhibited the entry of tissue T cells into afferent lymphatics in homeostatic and inflammatory conditions and caused the arrest, mediated at least partially by interactions of the integrin LFA-1 with its ligand ICAM-1 and of the integrin VLA-4 with its ligand VCAM-1, of polarized T cells at the basal surface of lymphatic but not blood vessel endothelium. Thus, the increased sphingosine 1-phosphate present in inflamed peripheral tissues may induce T cell retention and suppress T cell egress.


Journal of Experimental Medicine | 2006

Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism

Kenji Kabashima; Nicole M. Haynes; Ying Xu; Stephen L. Nutt; Maria L. Allende; Richard L. Proia; Jason G. Cyster

After induction in secondary lymphoid organs, a subset of antibody-secreting cells (ASCs) homes to the bone marrow (BM) and contributes to long-term antibody production. The factors determining secondary lymphoid organ residence versus BM tropism have been unclear. Here we demonstrate that in mice treated with FTY720 or that lack sphingosine-1-phosphate (S1P) receptor-1 (S1P1) in B cells, IgG ASCs are induced and localize normally in secondary lymphoid organs but they are reduced in numbers in blood and BM. Many IgG ASCs home to BM on day 3 of the secondary response and day 3 splenic ASCs exhibit S1P responsiveness, whereas the cells remaining at day 5 are unable to respond. S1P1 mRNA abundance is higher in ASCs isolated from blood compared to spleen, whereas CXCR4 expression is lower. Blood ASCs also express higher amounts of Kruppel-like factor (KLF)2, a regulator of S1P1 gene expression. These findings establish an essential role for S1P1 in IgG plasma cell homing and they suggest that differential regulation of S1P1 expression in differentiating plasma cells may determine whether they remain in secondary lymphoid organs or home to BM.


Biochimica et Biophysica Acta | 2002

Sphingosine-1-phosphate receptors and the development of the vascular system

Maria L. Allende; Richard L. Proia

Extracellular sphingolipid signaling has been implicated as an essential event in vascular development. Sphingosine-1-phosphate (S1P), through interactions with G protein-coupled receptors, regulates functions of endothelial and smooth muscle cells (SMCs)-the major cell types of the vasculature. The knockout of the gene encoding the S1P1 receptor (formally known as Edg-1) in mice blocks vascular maturation, the process where SMCs and pericytes envelop nascent endothelial tubes. The question that remains is how stimulation of S1P receptors controls this critical event in the developmental sequence leading to the formation of functional blood vessels.


Current Opinion in Structural Biology | 2002

Lubricating cell signaling pathways with gangliosides.

Maria L. Allende; Richard L. Proia

Gangliosides--glycosphingolipids that contain sialic acid--are concentrated in plasma membrane lipid domains that are specialized for cell signaling. Recent evidence indicates that gangliosides have two different roles in cell signaling. They can act in cis to modulate tyrosine kinase receptor function and in trans as ligands for receptors that facilitate communication between cells. These signaling functions of gangliosides may be potential therapeutic targets in cancer, diabetes and nerve regeneration.


Journal of Experimental Medicine | 2010

S1P1 receptor directs the release of immature B cells from bone marrow into blood

Maria L. Allende; Galina Tuymetova; Bridgin G. Lee; Eliana Bonifacino; Yun-Ping Wu; Richard L. Proia

S1P1 receptor expression is required for the egress of newly formed T cells from the thymus and exit of mature T and B cells from secondary lymphoid organs. In this study, we deleted the expression of the S1P1 receptor gene (S1pr1) in developing B cells in the bone marrow. Although B cell maturation within the bone marrow was largely normal in the B cell–specific S1pr1 knockout (B-S1pr1KO) mice, their newly generated immature B cells appeared in the blood at abnormally low numbers as compared with control mice. In the bone marrow of B-S1pr1KO mice, immature B cells in contact with the vascular compartment displayed increased apoptosis as compared with control mice. Forced expression of CD69, a negative regulator of S1P1 receptor expression, in developing bone marrow B cells also reduced the number of immature B cells in the blood. Attenuation of CXCR4 signaling, which is required for the proper retention of developing B cells in bone marrow, did not release immature B cells into the blood of B-S1pr1KO mice as effectively as in control mice. Our results indicate that the S1P1 receptor provides a signal necessary for the efficient transfer of newly generated immature B cells from the bone marrow to the blood.


Journal of Biological Chemistry | 2011

Sphingosine-1-phosphate Lyase Deficiency Produces a Pro-inflammatory Response While Impairing Neutrophil Trafficking

Maria L. Allende; Meryem Bektas; Bridgin G. Lee; Eliana Bonifacino; Jiman Kang; Galina Tuymetova; Weiping Chen; Julie D. Saba; Richard L. Proia

Sphingosine-1-phosphate (S1P) lyase catalyzes the degradation of S1P, a potent signaling lysosphingolipid. Mice with an inactive S1P lyase gene are impaired in the capacity to degrade S1P, resulting in highly elevated S1P levels. These S1P lyase-deficient mice have low numbers of lymphocytes and high numbers of neutrophils in their blood. We found that the S1P lyase-deficient mice exhibited features of an inflammatory response including elevated levels of pro-inflammatory cytokines and an increased expression of genes in liver associated with an acute-phase response. However, the recruitment of their neutrophils into inflamed tissues was impaired and their neutrophils were defective in migration to chemotactic stimulus. The IL-23/IL-17/granulocyte-colony stimulating factor (G-CSF) cytokine-controlled loop regulating neutrophil homeostasis, which is dependent on neutrophil trafficking to tissues, was disturbed in S1P lyase-deficient mice. Deletion of the S1P4 receptor partially decreased the neutrophilia and inflammation in S1P lyase-deficient mice, implicating S1P receptor signaling in the phenotype. Thus, a genetic block in S1P degradation elicits a pro-inflammatory response but impairs neutrophil migration from blood into tissues.


Journal of Biological Chemistry | 2010

Sphingosine 1-Phosphate Lyase Deficiency Disrupts Lipid Homeostasis in Liver

Meryem Bektas; Maria L. Allende; Bridgin G. Lee; Weiping Chen; Marcelo Amar; Alan T. Remaley; Julie D. Saba; Richard L. Proia

The cleavage of sphingoid base phosphates by sphingosine-1-phosphate (S1P) lyase to produce phosphoethanolamine and a fatty aldehyde is the final degradative step in the sphingolipid metabolic pathway. We have studied mice with an inactive S1P lyase gene and have found that, in addition to the expected increase of sphingoid base phosphates, other sphingolipids (including sphingosine, ceramide, and sphingomyelin) were substantially elevated in the serum and/or liver of these mice. This latter increase is consistent with a reutilization of the sphingosine backbone for sphingolipid synthesis due to its inability to exit the sphingolipid metabolic pathway. Furthermore, the S1P lyase deficiency resulted in changes in the levels of serum and liver lipids not directly within the sphingolipid pathway, including phospholipids, triacyglycerol, diacylglycerol, and cholesterol. Even though lipids in serum and lipid storage were elevated in liver, adiposity was reduced in the S1P lyase-deficient mice. Microarray analysis of lipid metabolism genes in liver showed that the S1P lyase deficiency caused widespread changes in their expression pattern, with a significant increase in the expression of PPARγ, a master transcriptional regulator of lipid metabolism. However, the mRNA expression of the genes encoding the sphingosine kinases and S1P phosphatases, which directly control the levels of S1P, were not significantly changed in liver of the S1P lyase-deficient mice. These results demonstrate that S1P lyase is a key regulator of the levels of multiple sphingolipid substrates and reveal functional links between the sphingolipid metabolic pathway and other lipid metabolic pathways that may be mediated by shared lipid substrates and changes in gene expression programs. The disturbance of lipid homeostasis by altered sphingolipid levels may be relevant to metabolic diseases.


Journal of Biological Chemistry | 2006

Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids.

Mari Kono; Jennifer L. Dreier; Jessica M. Ellis; Maria L. Allende; Danielle N. Kalkofen; Kathleen M. Sanders; Jacek Bielawski; Alicja Bielawska; Yusuf A. Hannun; Richard L. Proia

Complex sphingolipids are abundant as eukaryotic cell membrane components, whereas their metabolites, in particular ceramide, sphingosine, and sphingosine 1-phosphate, are involved in diverse cell signaling processes. In mammals, degradation of ceramide by ceramidase yields sphingosine, which is phosphorylated by the action of sphingosine kinase to generate sphingosine 1-phosphate. Therefore, ceramidases are key enzymes in the regulation of the cellular levels of ceramide, sphingosine, and sphingosine 1-phosphate. To explore the physiological functions of a neutral ceramidase with diverse cellular locations, we disrupted the Asah2 gene in mice. Asah2 null mice have a normal life span and do not show obvious abnormalities or major alterations in total ceramide levels in tissues. The Asah2-encoded neutral ceramidase is highly expressed in the small intestine along the brush border, suggesting that the neutral ceramidase may be involved in a pathway for the digestion of dietary sphingolipids. Indeed, Asah2 null mice were deficient in the intestinal degradation of ceramide. Thus, the results indicate that the Asah2-encoded neutral ceramidase is a key enzyme for the catabolism of dietary sphingolipids and regulates the levels of bioactive sphingolipid metabolites in the intestinal tract.

Collaboration


Dive into the Maria L. Allende's collaboration.

Top Co-Authors

Avatar

Richard L. Proia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Galina Tuymetova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weiping Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mari Kono

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ana Olivera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle N. Kalkofen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jiman Kang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie D. Saba

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Meryem Bektas

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge