Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María L. García-Rubio is active.

Publication


Featured researches published by María L. García-Rubio.


Nature | 2014

BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2

Vaibhav Bhatia; Sonia Barroso; María L. García-Rubio; Emanuela Tumini; Emilia Herrera-Moyano; Andrés Aguilera

Genome instability is central to ageing, cancer and other diseases. It is not only proteins involved in DNA replication or the DNA damage response (DDR) that are important for maintaining genome integrity: from yeast to higher eukaryotes, mutations in genes involved in pre-mRNA splicing and in the biogenesis and export of messenger ribonucleoprotein (mRNP) also induce DNA damage and genome instability. This instability is frequently mediated by R-loops formed by DNA–RNA hybrids and a displaced single-stranded DNA. Here we show that the human TREX-2 complex, which is involved in mRNP biogenesis and export, prevents genome instability as determined by the accumulation of γ-H2AX (Ser-139 phosphorylated histone H2AX) and 53BP1 foci and single-cell electrophoresis in cells depleted of the TREX-2 subunits PCID2, GANP and DSS1. We show that the BRCA2 repair factor, which binds to DSS1, also associates with PCID2 in the cell. The use of an enhanced green fluorescent protein-tagged hybrid-binding domain of RNase H1 and the S9.6 antibody did not detect R-loops in TREX-2-depleted cells, but did detect the accumulation of R-loops in BRCA2-depleted cells. The results indicate that R-loops are frequently formed in cells and that BRCA2 is required for their processing. This link between BRCA2 and RNA-mediated genome instability indicates that R-loops may be a chief source of replication stress and cancer-associated instability.


The EMBO Journal | 2011

Genome‐wide function of THO/TREX in active genes prevents R‐loop‐dependent replication obstacles

Belén Gómez-González; María L. García-Rubio; Rodrigo Bermejo; Hélène Gaillard; Katsuhiko Shirahige; Antonio Marín; Marco Foiani; Andrés Aguilera

THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription‐associated recombination. Whether or not it has a ubiquitous role in the genome is unknown. Chromatin immunoprecipitation (ChIP)‐chip studies reveal that the Hpr1 component of THO and the Sub2 RNA‐dependent ATPase have genome‐wide distributions at active ORFs in yeast. In contrast to RNA polymerase II, evenly distributed from promoter to termination regions, THO and Sub2 are absent at promoters and distributed in a gradual 5′ → 3′ gradient. This is accompanied by a genome‐wide impact of THO–Sub2 deletions on expression of highly expressed, long and high G+C‐content genes. Importantly, ChIP‐chips reveal an over‐recruitment of Rrm3 in active genes in THO mutants that is reduced by RNaseH1 overexpression. Our work establishes a genome‐wide function for THO–Sub2 in transcription elongation and mRNP biogenesis that function to prevent the accumulation of transcription‐mediated replication obstacles, including R‐loops.


Molecular and Cellular Biology | 2001

Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae.

Sebastián Chávez; María L. García-Rubio; Félix Prado; Andrés Aguilera

ABSTRACT Hpr1 forms, together with Tho2, Mft1, and Thp2, the THO complex, which controls transcription elongation and genome stability inSaccharomyces cerevisiae. Mutations in genes encoding the THO complex confer strong transcription-impairment and hyperrecombination phenotypes in the bacterial lacZgene. In this work we demonstrate that Hpr1 is a factor required for transcription of long as well as G+C-rich DNA sequences. Using different lacZ segments fused to the GAL1promoter, we show that the negative effect of lacZsequences on transcription depends on their distance from the promoter. In parallel, we show that transcription of either a longLYS2 fragment or the S. cerevisiae YAT1G+C-rich open reading frame fused to the GAL1 promoter is severely impaired in hpr1 mutants, whereas transcription of LAC4, the Kluyveromyces lactis ortholog of lacZ but with a lower G+C content, is only slightly affected. The hyperrecombination behavior of the DNA sequences studied is consistent with the transcriptional defects observed in hpr1 cells. These results indicate that both length and G+C content are important elements influencing transcription in vivo. We discuss their relevance for the understanding of the functional role of Hpr1 and, by extension, the THO complex.


Journal of Biological Chemistry | 2003

Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation.

Ana G. Rondón; Sonia Jimeno; María L. García-Rubio; Andrés Aguilera

THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1Δ, tho2Δ, and mft1Δ mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1Δ mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.


EMBO Reports | 2004

Molecular evidence indicating that the yeast PAF complex is required for transcription elongation

Ana G. Rondón; Mercedes Gallardo; María L. García-Rubio; Andrés Aguilera

PAF is a five‐subunit protein complex composed of Paf1, Cdc73, Leo1, Rtf1 and Ctr9, which was purified from yeast in association with RNA polymerase II and which is believed to function in transcription elongation. However, no direct proof exists for this yet. To assay whether PAF is required in elongation, we determined the in vitro transcription‐elongation efficiencies of mutant cell extracts using a DNA template containing two G‐less cassettes. paf1Δ or cdc73Δ cell extracts showed reduced transcription‐elongation efficiencies (16–18% of the wild‐type levels), whereas leo1Δ and rtf1Δ showed wild‐type levels. In vivo transcription efficiency was diminished in the four mutants analysed, as determined by their abilities to transcribe lacZ. Our work provides molecular evidence that PAF has a positive role in transcription elongation and is composed of at least two functionally different types of subunits (Paf1‐Cdc73 and Leo1‐Rtf1).


The EMBO Journal | 2003

Molecular evidence for a positive role of Spt4 in transcription elongation.

Ana G. Rondón; María L. García-Rubio; Sergio González-Barrera; Andrés Aguilera

We have previously shown that yeast mutants of the THO complex have a defect in gene expression, observed as an impairment of lacZ transcription. Here we analyze the ability of mutants of different transcription elongation factors to transcribe lacZ. We found that spt4Δ, like THO mutants, impaired transcription of lacZ and of long and GC‐rich DNA sequences fused to the GAL1 promoter. Using a newly developed in vitro transcription elongation assay, we show that Spt4 is required in elongation. There is a functional interaction between Spt4 and THO, detected by the lethality or strong gene expression defect and hyper‐recombination phenotypes of double mutants in the W303 genetic background. Our results indicate that Spt4–Spt5 has a positive role in transcription elongation and suggest that Spt4–Spt5 and THO act at different steps during mRNA biogenesis.


PLOS Genetics | 2015

The Fanconi Anemia Pathway Protects Genome Integrity from R-loops

María L. García-Rubio; Carmen Pérez-Calero; Sonia Barroso; Emanuela Tumini; Emilia Herrera-Moyano; Iván V. Rosado; Andrés Aguilera

Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops.


PLOS Genetics | 2009

Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair

Hélène Gaillard; Cristina Tous; Javier Botet; Cristina González-Aguilera; María José Quintero; Laia Viladevall; María L. García-Rubio; Alfonso Rodríguez-Gil; Antonio Marín; Joaquín Ariño; José L. Revuelta; Sebastián Chávez; Andrés Aguilera

RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation.


Genes & Development | 2014

The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription–replication conflicts

Emilia Herrera-Moyano; Xénia Mergui; María L. García-Rubio; Sonia Barroso; Andrés Aguilera

FACT (facilitates chromatin transcription) is a chromatin-reorganizing complex that swaps nucleosomes around the RNA polymerase during transcription elongation and has a role in replication that is not fully understood yet. Here we show that recombination factors are required for the survival of yeast FACT mutants, consistent with an accumulation of DNA breaks that we detected by Rad52 foci and transcription-dependent hyperrecombination. Breaks also accumulate in FACT-depleted human cells, as shown by γH2AX foci and single-cell electrophoresis. Furthermore, FACT-deficient yeast and human cells show replication impairment, which in yeast we demonstrate by ChIP-chip (chromatin immunoprecipitation [ChIP] coupled with microarray analysis) of Rrm3 to occur genome-wide but preferentially at highly transcribed regions. Strikingly, in yeast FACT mutants, high levels of Rad52 foci are suppressed by RNH1 overexpression; R loops accumulate at high levels, and replication becomes normal when global RNA synthesis is inhibited in FACT-depleted human cells. The results demonstrate a key function of FACT in the resolution of R-loop-mediated transcription-replication conflicts, likely associated with a specific chromatin organization.


Nature | 2012

Coordinated control of replication and transcription by a SAPK protects genomic integrity

Alba Duch; Irene Felipe-Abrio; Sonia Barroso; Gilad Yaakov; María L. García-Rubio; Andrés Aguilera; Eulàlia de Nadal; Francesc Posas

Upon environmental changes or extracellular signals, cells are subjected to marked changes in gene expression . Dealing with high levels of transcription during replication is critical to prevent collisions between the transcription and replication pathways and avoid recombination events. In response to osmostress, hundreds of stress-responsive genes are rapidly induced by the stress-activated protein kinase (SAPK) Hog1 (ref. 6), even during S phase. Here we show in Saccharomyces cerevisae that a single signalling molecule, Hog1, coordinates both replication and transcription upon osmostress. Hog1 interacts with and phosphorylates Mrc1, a component of the replication complex. Phosphorylation occurs at different sites to those targeted by Mec1 upon DNA damage. Mrc1 phosphorylation by Hog1 delays early and late origin firing by preventing Cdc45 loading, as well as slowing down replication-complex progression. Regulation of Mrc1 by Hog1 is completely independent of Mec1 and Rad53. Cells carrying a non-phosphorylatable allele of MRC1 (mrc13A) do not delay replication upon stress and show a marked increase in transcription-associated recombination, genomic instability and Rad52 foci. In contrast, mrc13A induces Rad53 and survival in the presence of hydroxyurea or methyl methanesulphonate. Therefore, Hog1 and Mrc1 define a novel S-phase checkpoint independent of the DNA-damage checkpoint that permits eukaryotic cells to prevent conflicts between DNA replication and transcription, which would otherwise lead to genomic instability when both phenomena are temporally coincident.

Collaboration


Dive into the María L. García-Rubio's collaboration.

Top Co-Authors

Avatar

Andrés Aguilera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosa Luna

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana G. Rondón

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar

Sonia Barroso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sonia Jimeno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Belén Gómez-González

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Emilia Herrera-Moyano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alba Duch

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina González-Aguilera

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge