Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María L. Ribeiro is active.

Publication


Featured researches published by María L. Ribeiro.


Placenta | 2008

Dual Effect of Anandamide on Rat Placenta Nitric Oxide Synthesis

Maximiliano Cella; G.F. Leguizamón; Micaela S. Sordelli; Marcos Cervini; T. Guadagnoli; María L. Ribeiro; A.M. Franchi; Mariana Farina

Anandamide (AEA) has been reported to have pleiotropic effects on reproduction, but the mechanism by which it exerts these effects is unclear. The aim of this study is to characterize rat placental endocannabinoid system and to analyze the possible functional role of AEA in the regulation of NO levels in rat placenta during pregnancy. We found that cannabinoids receptors (CB1 and CB2), FAAH and TRPV1 were expressed in chorio-allantoic placenta. NOS activity peaked at day 13 and decreased with progression of pregnancy. Both exogenous and endogenous AEA significantly decreased NOS activity. Although pre-incubation with AM251 (CB1 antagonist) or AM630 (CB2 antagonist) had no effect, co-incubation with both antagonists induced NOS activity. Furthermore, pre-incubation with exogenous AEA and both antagonists resulted in the induction of placental NOS activity and this effect was reverted with capsazepine (selective TRPV1 antagonist). Additionally, the enhanced NO synthesis caused by capsaicin was abrogated by co-treatment with capsazepine, illustrating that NOS activity could be modulated by TRPV1. Finally, the inhibition of TRPV1 receptor by capsazepine caused a significant fall in NOS activity. These data support the concept that AEA modulates NO levels by two independent pathways: (1) diminishing the NOS activity via CBs; and (2) stimulating NO synthesis via TRPV1. We hypothesized that AEA have an important implication in the normal function of placental tissues.


PLOS ONE | 2012

Interaction between Lysophosphatidic Acid, Prostaglandins and the Endocannabinoid System during the Window of Implantation in the Rat Uterus

Micaela S. Sordelli; Jimena S. Beltrame; Maximiliano Cella; María Gracia Gervasi; Silvina Perez Martinez; Juliana Burdet; Elsa Zotta; A.M. Franchi; María L. Ribeiro

Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids’ receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins’ synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids’ levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid molecules, prostaglandins and endocannabinoids, which prepare the uterine milieu for embryo invasion during the window of implantation.


Neuroimmunomodulation | 2010

Inflammatory Agents Involved in Septic Miscarriage

Julieta Aisemberg; Claudia Alejandra Vercelli; Manuel Luis Wolfson; Ana Inés Salazar; Claudia Osycka-Salut; Silvia Billi; María L. Ribeiro; Mariana Farina; A.M. Franchi

Even though the understanding of the cause of early pregnancy loss due to chromosomal abnormalities has improved, there is a dearth of knowledge of the causes of loss in euploid conceptuses. Maternal infections are a cause of abort in humans, but the mechanisms are not clear, so we have developed a murine model to study the mechanism of septic abortion by inducing embryonic resorption (ER) with lipopolysaccharide (LPS). We demonstrated that augmented production of nitric oxide (NO) and prostaglandins (PG) is involved in ER, and that inhibitors of their synthesis could prevent ER. Also, we observed an increase in the oxidative damage, evidenced by nitration of tyrosine proteins, due to the peroxynitrite anion. Since an association between chronic marijuana smoking and early miscarriage has been shown in women, we studied the participation of anandamide (AEA), the principal endocannabinoid, on the mechanism of action of LPS. We showed that LPS-induced NO synthesis and tissue damage were mediated by AEA, and that this endotoxin inhibited AEA degradation and increased its synthesis. These results suggest that several inflammatory molecules participate in the mechanism of early pregnancy loss and that their modulation could be useful tools to prevent it.


Reproductive Biomedicine Online | 2009

17β-oestradiol and progesterone regulate anandamide synthesis in the rat uterus

María L. Ribeiro; Claudia Alejandra Vercelli; Micaela S. Sordelli; Mariana Farina; Marcos Cervini; Silvia Billi; A.M. Franchi

Anandamide is an endocannabinoid known to participate in reproductive processes. This study observed that 17beta-oestradiol and progesterone modulated the production of anandamide and its metabolizing enzymes in the rat uterus. Anandamide production was highest at the oestrous stage and 17beta-oestradiol and progesterone stimulated its synthesis in ovariectomized rats. During early pregnancy, anandamide production remained constant on days 1-5 of gestation and diminished towards day 6. On day 6, implantation sites showed lower synthesis compared with interimplantation sites. In the delayed implantation model, 17beta-oestradiol inhibited anandamide synthesis compared with progesterone. During pseudopregnancy, anandamide production did not decrease towards day 6 as occurred during normal gestation. The administration of 17beta-oestradiol augmented anandamide production in rats on day 5 of pseudopregnancy; the treatment with mifepristone did not produce any change in anandamide synthesis. Anandamide-metabolizing enzymes were regulated by progesterone and 17beta-oestradiol. The effect of ovarian hormones on the synthesis of anandamide depends on different physiological conditions, oestrous cycle and early pregnancy, and on the presence of the activated blastocyst. Thus, ovarian hormones, as signals that emanate from the mother, operate in conjunction with the blastocyst intrinsic programme, regulating the synthesis of anandamide in a specific manner during crucial reproductive events that may compromise pregnancy outcome.


PLOS ONE | 2011

The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst

Micaela S. Sordelli; Jimena S. Beltrame; Juliana Burdet; Elsa Zotta; Romina Pardo; Maximiliano Cella; A.M. Franchi; María L. Ribeiro

Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot−1 h−1) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies.


Reproduction, Fertility and Development | 2017

Endogenous lysophosphatidic acid participates in vascularisation and decidualisation at the maternal–fetal interface in the rat

Micaela S. Sordelli; Jimena S. Beltrame; Elsa Zotta; Natalia Gomez; Ganna Dmytrenko; María Elena Sales; Sandra M. Blois; Carlos Davio; Silvina Perez Martinez; A.M. Franchi; María L. Ribeiro

Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA3 receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA3 receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA3 receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg-1) in a total volume of 2μL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA3 receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA3 receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.


Journal of Cellular Biochemistry | 2018

Lysophosphatidic acid-triggered pathways promote the acquisition of trophoblast endovascular phenotype in vitro

Jimena S. Beltrame; Micaela S. Sordelli; Vanesa A. Cañumil; A.M. Franchi; María L. Ribeiro

Successful implantation and placentation requires that extravillous cytotrophoblast acquires an endovascular phenotype and remodels uterine spiral arteries. Defects in this mechanism correlate with severe obstetric complications as implantation failure and preeclampsia. Lysophosphatidic acid (LPA) participates in embryo implantation and contributes to vascular physiology in different biological systems. However, the role of LPA on trophoblast endovascular transformation has not been studied. Due to difficulties in studying human pregnancy in vivo, we adopted a pharmacological approach in vitro to investigate LPA action in various aspects of trophoblast endovascular response, such as the formation of endothelial capillary‐like structures, migration, and proliferation. The HTR‐8/SVneo cell line established from human first trimester cytotrophoblast was used to model the acquisition of the endovascular phenotype by the invading trophoblast. LPA increased HTR‐8/SVneo tube formation, migration (wound healing assay and phalloidin staining) and proliferation (MTT assay). LPA G protein‐coupled receptors, LPA1 and LPA3, were expressed in HTR‐8/SVneo. By using selective antagonists, we showed that enhanced tubulogenesis was mediated by LPA3. In addition, cyclooxygenase‐2 and inducible nitric oxide synthase pathways participated in LPA‐stimulated tubulogenesis. Inducible nitric oxide synthase was activated downstream cyclooxygenase‐2. Furthermore, prostaglandin E2 and a nitric oxide donor (SNAP) increased trophoblast tube formation in a concentration‐dependent manner. Finally, we observed that cyclooxygenase‐2 and inducible nitric oxide synthase were localized in the nucleus, and LPA did not modify their cellular distribution. Our results show that LPA‐triggered regulatory pathways promote trophoblast endovascular response in vitro, suggesting a new role for LPA during spiral artery remodeling at the maternal‐fetal interface.


Journal of Cellular Physiology | 2018

Lysophosphatidic acid induces the crosstalk between the endovascular human trophoblast and endothelial cells in vitro: BELTRAME et al.

Jimena S. Beltrame; Leopoldina Scotti; Micaela S. Sordelli; Vanesa A. Cañumil; A.M. Franchi; Fernanda Parborell; María L. Ribeiro

Spiral artery remodeling at the maternal–fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast–endothelial crosstalk in vitro. HTR‐8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS‐398 (selective cyclooxygenase‐2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL‐6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast–endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA‐induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase‐2 and IL‐6 pathways were involved in H8–EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL‐6 mRNA by cyclooxygenase‐2 pathway in H8 cells. Collectively, LPA promotes trophoblast–endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal–fetal interface.


European Journal of Pharmacology | 2006

Prostaglandins modulate nitric oxide synthase activity early in time in the uterus of estrogenized rat challenged with lipopolysaccharide

Maximiliano Cella; Julieta Aisemberg; Micaela S. Sordelli; Silvia Billi; Mariana Farina; A.M. Franchi; María L. Ribeiro


Inflammation Research | 2010

Nitric oxide synthase 1 and cyclooxygenase-2 enzymes are targets of muscarinic activation in normal and inflamed NIH3T3 cells

Alejandro Español; Nora Goren; María L. Ribeiro; María Elena Sales

Collaboration


Dive into the María L. Ribeiro's collaboration.

Top Co-Authors

Avatar

A.M. Franchi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maximiliano Cella

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Mariana Farina

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Elsa Zotta

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

María Elena Sales

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia Billi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge