Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Laura Fanani is active.

Publication


Featured researches published by Maria Laura Fanani.


Biophysical Journal | 2002

Bidirectional Control of Sphingomyelinase Activity and Surface Topography in Lipid Monolayers

Maria Laura Fanani; Steffen Härtel; Rafael G. Oliveira; Bruno Maggio

Lipid lateral organization is increasingly found to modulate membrane-bound enzymes. We followed in real time the reaction course of sphingomyelin (SM) degradation by Bacillus cereus sphingomyelinase (SMase) of lipid monolayers by epifluorescence microscopy. There is evidence that formation of ceramide (Cer), a lipid second messenger, drives structural reorganization of membrane lipids. Our results provide visual evidence that SMase activity initially alters surface topography by inducing phase separation into condensed (Cer-enriched) and expanded (SM-enriched) domains. The Cer-enriched phase grows steadily as the reaction proceeds at a constant rate. The surface topography derived from the SMase-driven reaction was compared with, and found to differ from, that of premixed SM/Cer monolayers of the same lipid composition, indicating that substantial information content is stored depending on the manner in which the surface was generated. The long-range topographic changes feed back on the kinetics of Smase, and the onset of condensed-phase percolation is temporally correlated with a rapid drop of reaction rate. These observations reveal a bidirectional influence and communication between effects taking place at the local molecular level and the supramolecular organization. The results suggest a novel biocatalytic-topographic mechanism in which a surface enzymatic activity can influence the function of amphitropic proteins important for cell function.


Biophysical Journal | 2009

Coexistence of Immiscible Mixtures of Palmitoylsphingomyelin and Palmitoylceramide in Monolayers and Bilayers

Jon V. Busto; Maria Laura Fanani; Luisina De Tullio; Jesús Sot; Bruno Maggio; Félix M. Goñi; Alicia Alonso

A combination of lipid monolayer- and bilayer-based model systems has been applied to explore in detail the interactions between and organization of palmitoylsphingomyelin (pSM) and the related lipid palmitoylceramide (pCer). Langmuir balance measurements of the binary mixture reveal favorable interactions between the lipid molecules. A thermodynamically stable point is observed in the range approximately 30-40 mol % pCer. The pSM monolayer undergoes hyperpolarization and condensation with small concentrations of pCer, narrowing the liquid-expanded (LE) to liquid-condensed (LC) pSM main phase transition by inducing intermolecular interactions and chain ordering. Beyond this point, the phase diagram no longer reveals the presence of the pSM-enriched phase. Differential scanning calorimetry (DSC) of multilamellar vesicles reveals a widening of the pSM main gel-fluid phase transition (41 degrees C) upon pCer incorporation, with formation of a further endotherm at higher temperatures that can be deconvoluted into two components. DSC data reflect the presence of pCer-enriched domains coexisting, in different proportions, with a pSM-enriched phase. The pSM-enriched phase is no longer detected in DSC thermograms containing >30 mol % pCer. Direct domain visualization has been carried out by fluorescence techniques on both lipid model systems. Epifluorescence microscopy of mixed monolayers at low pCer content shows concentration-dependent, morphologically different pCer-enriched LC domain formation over a pSM-enriched LE phase, in which pCer content close to 5 and 30 mol % can be determined for the LE and LC phases, respectively. In addition, fluorescence confocal microscopy of giant vesicles further confirms the formation of segregated pCer-enriched lipid domains. Vesicles cannot form at >40 mol % pCer content. Altogether, the presence of at least two immiscible phase-segregated pSM-pCer mixtures of different compositions is proposed at high pSM content. A condensed phase (with domains segregated from the liquid-expanded phase) showing enhanced thermodynamic stability occurs near a compositional ratio of 2:1 (pSM/pCer). These observations become significant on the basis of the ceramide-induced microdomain aggregation and platform formation upon sphingomyelinase enzymatic activity on cellular membranes.


Molecular Membrane Biology | 1997

Mutual modulation of sphingomyelinase and phospholipase A2 activities against mixed lipid monolayers by their lipid intermediates and glycosphingolipids

Maria Laura Fanani; Bruno Maggio

Sphingomyelinase activity against pure sphingomyelin monolayers is constant up to a surface pressure of 18 mN/m and falls above it. Sphingomyelinase- and phospholipase A2-mediated phosphohydrolytic pathways are mutually modulated by the presence of their respective substrates and products. At 15 mN/m non-substrate lipids such as ceramide at a mole fraction of 0.1 in mixed films with the pure substrate, inhibit the sphingomyelinase activity. Ganglioside GM1, another ceramide-containing complex sphingolipid, also inhibits sphingomyelinase activity, while a chemically related glycosphingolipid such as asialo-GM1 has no effect. The activity is unaltered by dipalmitoylphosphatidylcholine and by an equimolar mixture of its products of hydrolysis by phospholipase A2, fatty acid and lysoderivative, but it is inhibited by only one of them or by dilauroylphosphatidylcholine. Phospholipase A2 is inhibited by sphingomyelin, and activated by ceramide and by palmitic acid, one of the products of its own phosphohydrolytic reaction.


Lipids | 1998

Surface pressure-dependent cross-modulation of sphingomyelinase and phospholipase A2 in monolayers

Maria Laura Fanani; Bruno Maggio

We investigated the ways in which phospholipase A2 and sphingomyelinase are mutually modulated at lipid interfaces. The activity of one enzyme is affected by its own reaction products and by substrates and products of the other enzyme; all this depends differently on the lateral surface pressure. Ceramide inhibits both the sphingomyelinase activity rate and the extent of degradation, and decreases the lag time at all surface pressures. Dilauroyl- and dipalmitoylphosphatidyl-choline, the substrates of phospholipase A2 (PLA2), do not affect sphingomyelinase activity. The products of PLA2, palmitic acid and lysopalmitoylphosphatidylcholine, strongly enhance and shift to high surface pressures the activity optimum and the cut-off point of sphingomyelinase. Palmitic acid also shifts to high surface pressures the cut-off point of PLA2 activity. Sphingomyelin strongly inhibits PLA2 at surface pressures above 5 mN/m, while ceramide shifts the cut-off point and the activity optimum to high surface pressures. The sphingolipids increase the lag time of PLA2 at low surface pressures. Both phosphohydrolytic pathways involve different levels of control on precatalytic steps and on the rate of activity that appear independent on specific alterations of molecular packing and surface potential. The mutual lipid-mediated interfacial modulation between both phosphohydrolytic pathways indicates that phospholipid degradation may be self-amplified or dampened depending on subtle changes of surface pressure and composition.


Biophysical Journal | 2009

Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition.

Maria Laura Fanani; Luisina De Tullio; Steffen Härtel; Jorge Jara; Bruno Maggio

Sphingomyelinase (SMase)-induced ceramide (Cer)-enriched domains in a lipid monolayer are shown to result from an out-of-equilibrium situation. This is induced by a change of composition caused by the enzymatic production of Cer in a sphingomyelin (SM) monolayer that leads to a fast SM/Cer demixing into a liquid-condensed (LC), Cer-enriched and a liquid-expanded, SM-enriched phases. The morphological evolution and kinetic dependence of Cer-enriched domains is studied under continuous observation by epifluorescence microscopy. Domain shape annealing is observed from branched to rounded shapes after SMase activity quenching by EDTA, with a decay halftime of approximately 10 min. An out-of-equilibrium fast domain growth is not the determinant factor for domain morphology. Domain shape rearrangement in nearly equilibrium conditions result from the counteraction of intradomain dipolar repulsion and line tension, according to McConnells shape transition theory. Phase separation causes a transient compositional overshoot within the LC phase that implies an increased out-of-equilibrium enrichment of Cer into the LC domains. As a consequence, higher intradomain repulsion leads to transient branched structures that relax to rounded shapes by lowering the proportion of Cer in the domain to equilibrium values. The fast action of SMase can be taken as a compositional perturbation that brings about important consequences for the surface organization.


Cell Biochemistry and Biophysics | 2008

Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes.

Bruno Maggio; Graciela A. Borioli; Maximiliano Del Boca; Luisina De Tullio; Maria Laura Fanani; Rafael G. Oliveira; Carla M. Rosetti; Natalia Wilke

Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid–protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.


Journal of Physical Chemistry B | 2011

Liquid-liquid domain miscibility driven by composition and domain thickness mismatch in ternary lipid monolayers.

Maria Laura Fanani; Bruno Maggio

This work describes how changes in surface pressure modulate the molecular organization of Langmuir monolayers formed by ternary mixtures of dlPC/pSM/Dchol that exhibit coexistence of liquid-expanded (LE) and liquid-ordered (Lo) phases. It provides a theoretical framework for understanding the pressure-induced critical miscibility point characteristic of monolayer systems with liquid-liquid phase coexistence. From compression isotherms and Brewster angle microscopy of Langmuir monolayers with a composition close to a tie line, we determined experimental values of mean molecular areas, surface potential, and monolayer thickness and could estimate the mean molecular area and composition of each coexisting phase. A surface-pressure-induced enrichment of the PC component in the Lo phase reduces both the compositional miscibility gap and the hydrophobic mismatch between phases. The liquid-liquid miscibility transition point observed at ≈25 mN/m can be explained by a competition between thermal energy and the line tension arising from the hydrophobic mismatch between the coexisting liquid phases.


Langmuir | 2011

Ceramide N-acyl chain length: a determinant of bidimensional transitions, condensed domain morphology, and interfacial thickness.

Fernando G. Dupuy; Maria Laura Fanani; Bruno Maggio

Several lipids of biological interest are able to form monomolecular surfaces with a rich variety of thickness and lateral topography that can be precisely controlled by defined variations of the film composition. Ceramide is one of the simplest sphingolipids, consisting of a sphingosine base N-linked to a fatty acid, and is a membrane mediator for cell-signaling events. In this work, films of ceramides N-acylated with the saturated fatty acids C10, C12, C14, and C16 were studied at the air-aqueous interface. The dipole moment contribution (from surface potential measurements) and the surface topography and thickness (as revealed by Brewster angle microscopy) were measured simultaneously with the surface pressure at different molecular areas. Several surface features were observed depending on the asymmetry between the sphingosine and the N-linked acyl chains. At 21 °C, the C16:0 and C14:0 ceramides showed condensed isotherms and the film topography revealed solid film patches (17.3-15.7 Å thick) that coalesced into a homogeneous surface by further compression. On the other hand, in the more asymmetric C12:0 and C10:0 ceramides, liquid expanded states and liquid expanded-condensed transitions occurred. In the phase coexistence region, the condensed state of these compounds formed flowerlike domains (11.1-13.3 Å thick). C12:0 ceramide domains were larger and more densely branched than those of C10:0 ceramide. Both the film thickness and the surface dipole moment of the condensed state increased with ceramide N-acyl chain length. Bending of the sphingosine chain over the N-linked acyl chain in the more asymmetric ceramides can account for the variation of the surface electrostatics, topography, and thickness of the films with the acyl chain mismatch.


Langmuir | 2011

Surface phase behavior and domain topography of ascorbyl palmitate monolayers.

Luciano Benedini; Maria Laura Fanani; Bruno Maggio; Natalia Wilke; Paula V. Messina; Santiago D. Palma; Pablo C. Schulz

Ascorbyl palmitate (ASC(16)) is a molecule of potential pharmacological interest due to its antioxidant properties and amphiphilic nature. The surface behavior of ASC(16) was studied using Langmuir monolayers and Brewster angle microscopy. This molecule formed stable monolayers at room temperature that showed phase transition from a liquid-expanded to liquid-condensed or crystalline phase, depending on the subphase conditions. Using a theoretical approach, we were able to explain the behavior of the ASC(16) film at different bulk pH values and salt conditions based on the surface pH and the dissociation fraction of the film. Both condensed phases corresponded to highly packed conditions with the crystalline phase occurring at a low charge density, showing molecular tilting and preferential growth at characteristic angles, while the liquid-condensed phase formed in highly charged surfaces revealed small flowerlike domains probably as a consequence of internal dipole repulsion. A smaller perpendicular dipole moment was observed for the crystalline than the liquid-condensed phase which may explain the domain features. In conclusion, ASC(16) showed a complex surface behavior that was highly sensitive to subphase conditions.


Cell Biochemistry and Biophysics | 2007

The initial surface composition and topography modulate sphingomyelinase-driven sphingomyelin to ceramide conversion in lipid monolayers

Luisina De Tullio; Bruno Maggio; Steffen Härtel; Jorge Jara; Maria Laura Fanani

Changes of the initial composition and topography of mixed monolayers of Sphingomyelin and Ceramide modulate the degradation of Sphingomyelin by Bacillus cereus Sphingomyelinase. The presence of initial lateral phase boundary due to coexisting condensed and expanded phase domains favors the precatalytic steps of the reaction. The amount and quality of the domain lateral interface, defined by the type of boundary undulation, appears as a modulatory supramolecular code which regulates the catalytic efficiency of the enzyme. The long range domain lattice structuring is determined by the Sphingomyelinase activity.

Collaboration


Dive into the Maria Laura Fanani's collaboration.

Top Co-Authors

Avatar

Bruno Maggio

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Natalia Wilke

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Luisina De Tullio

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Carla M. Rosetti

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Rafael G. Oliveira

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Peñalva

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

Graciela A. Borioli

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Marta I. Aveldaño

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar

Milagro Mottola

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Ernesto E. Ambroggio

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge