Maria Laura Martin
University of the Balearic Islands
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Laura Martin.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Gwendolyn Barceló-Coblijn; Maria Laura Martin; Maria Antònia Noguera-Salvà; Francisca Guardiola-Serrano; Anja Lüth; Burhard Kleuser; John E. Halver; Pablo V. Escribá
The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Silvia Terés; Victoria Lladó; Mónica Higuera; Gwendolyn Barceló-Coblijn; Maria Laura Martin; Maria Antònia Noguera-Salvà; Amaia Marcilla-Etxenike; Jose Manuel Garcia-Verdugo; Mario Soriano-Navarro; Carlos Saus; Ulises Gómez-Pinedo; Xavier Busquets; Pablo V. Escribá
Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.
PLOS ONE | 2012
Amaia Marcilla-Etxenike; Maria Laura Martin; Maria Antònia Noguera-Salvà; Jose Manuel Garcia-Verdugo; Mario Soriano-Navarro; Indranil Dey; Pablo V. Escribá; Xavier Busquets
Background 2-Hydroxyoleic acid is a synthetic fatty acid with potent anti-cancer activity which does not induce undesired side effects. However, the molecular and cellular mechanisms by which this compound selectively kills human glioma cancer cells without killing normal cells is not fully understood. The present study was designed to determine the molecular bases underlying the potency against 1321N1, SF-767 and U118 human glioma cell lines growth without affecting non cancer MRC-5 cells. Methodology/Principal Findings The cellular levels of endoplasmic reticulum (ER) stress, unfolded protein response (UPR) and autophagy markers were determined by quantitative RT-PCR and immunoblotting on 1321N1, SF-767 and U118 human glioma cells and non-tumor MRC-5 cells incubated in the presence or absence of 2OHOA or the ER stress/autophagy inducer, palmitate. The cellular response to these agents was evaluated by fluorescence microscopy, electron microscopy and flow cytometry. We have observed that 2OHOA treatments induced augments in the expression of important ER stress/UPR markers, such as phosphorylated eIF2α, IRE1α, CHOP, ATF4 and the spliced form of XBP1 in human glioma cells. Concomitantly, 2OHOA led to the arrest of 1321N1 cells in the G2/M phase of the cell cycle, with down-regulation of cyclin B1 and Cdk1/Cdc2 proteins in the three glioma cell lines studied. Finally, 2OHOA induced autophagy in 1321N1, SF-767 and U118 cells, with the appearance of autophagic vesicles and the up-regulation of LC3BI, LC3BII and ATG7 in 1321N1 cells, increases of LC3BI, LC3BII and ATG5 in SF-767 cells and up-regulation of LC3BI and LC3BII in U118 cells. Importantly, 2OHOA failed to induce such changes in non-tumor MRC-5 cells. Conclusion/Significance The present results demonstrate that 2OHOA induces ER stress/UPR and autophagy in human glioma (1321N1, SF-767 and U118 cell lines) but not normal (MRC-5) cells, unraveling the molecular bases underlying the efficacy and lack of toxicity of this compound.
Biochimica et Biophysica Acta | 2013
Maria Laura Martin; Gwendolyn Barceló-Coblijn; Rodrigo F.M. de Almeida; Maria Antònia Noguera-Salvà; Silvia Terés; Mónica Higuera; Gerhard Liebisch; Gerd Schmitz; Xavier Busquets; Pablo V. Escribá
The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is a potent antitumor drug that we rationally designed to regulate the membrane lipid composition and structure. The lipid modifications caused by 2OHOA treatments induce important signaling changes that end up with cell death (Terés et al., 2012 [1]). One of these regulatory effects is restoration of sphingomyelin levels, which are markedly lower in cancer cells compared to normal cells (Barceló-Coblijn et al., 2011 [2]). In this study, we report another important regulatory effect of 2OHOA on cancer cell membrane composition: a large increase in 2OHOA levels, accounting for ~15% of the fatty acids present in membrane phospholipids, in human glioma (SF767 and U118) and lung cancer (A549) cells. Concomitantly, we observed marked reductions in oleic acid levels and inhibition of stearoyl-CoA desaturase. The impact of these changes on the biophysical properties of the lipid bilayer was evaluated in liposomes reconstituted from cancer cell membrane lipid extracts. Thus, 2OHOA increased the packing of ordered domains and decreased the global order of the membrane. The present results further support and extend the knowledge about the mechanism of action for 2OHOA, based on the regulation of the membrane lipid composition and structure and subsequent modulation of membrane protein-associated signaling.
Biochimica et Biophysica Acta | 2014
Stefano Piotto; Simona Concilio; Erminia Bianchino; Pio Iannelli; David J. López; Silvia Terés; Maitane Ibarguren; Gwendolyn Barceló-Coblijn; Maria Laura Martin; Francisca Guardiola-Serrano; María Alonso-Sande; Sérgio S. Funari; Xavier Busquets; Pablo V. Escribá
The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cells Physiology, Pathology and Therapy.
Journal of Lipid Research | 2013
Maria Laura Martin; Gerhard Liebisch; Stefan Lehneis; Gerd Schmitz; María Alonso-Sande; Joan Bestard-Escalas; Daniel López; Jose Manuel Garcia-Verdugo; Mario Soriano-Navarro; Xavier Busquets; Pablo V. Escribá; Gwendolyn Barceló-Coblijn
The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor drug, involves the rapid and specific activation of sphingomyelin synthase (SMS), leading to a 4-fold increase in SM mass in tumor cells. In the present study, we investigated the source of the ceramides required to sustain this dramatic increase in SM. Through radioactive and fluorescent labeling, we demonstrated that sphingolipid metabolism was altered by a 24 h exposure to 2OHOA, and we observed a consistent increase in the number of lysosomes and the presence of unidentified storage materials in treated cells. Mass spectroscopy revealed that different sphingolipid classes accumulated in human glioma U118 cells after exposure to 2OHOA, demonstrating a specific effect on C16-, C20-, and C22-containing sphingolipids. Based on these findings, we propose that the demand for ceramides required to sustain the SMS activation (ca. 200-fold higher than the basal level) profoundly modifies both sphingolipid and phospholipid metabolism. As the treatment is prolonged, tumor cells fail to adequately metabolize sphingolipids, leading to a situation resembling sphingolipidosis, whereby cell viability is compromised.
PLOS ONE | 2017
Valentín García-Gutiérrez; María Teresa Gómez-Casares; José Manuel Puerta; Juan Manuel Alonso-Domínguez; Santiago Osorio; Juan Carlos Hernández-Boluda; Rosa Collado; María José Ramírez; Fátima Ibáñez; Maria Laura Martin; Juan D. Rodríguez-Gambarte; Carolina Martínez-Laperche; Montse Gómez; Dolly V. Fiallo; Sara Redondo; Alicia Rodríguez; Concepción Ruiz-Nuño; Juan Luis Steegmann; Antonio Jiménez-Velasco
In chronic myeloid leukemia (CML) patients, 3-month BCR-ABL1 levels have consistently been correlated with further outcomes. Monitoring molecular responses in CML using the GeneXpert (Cepheid) platform has shown an optimal correlation with standardized RQ-PCR (IS) when measuring BCR-ABL1 levels lower than 10%, as it is not accurate for values over 10%. The aim of the present study was to determine the predictive molecular value at three months on different outcome variables using the Xpert BCR-ABL1 MonitorTM assay (Xpert BCR-ABL1). We monitored 125 newly diagnosed consecutive CML patients in the chronic phase (CML-CP) using an automated method: Xpert BCR-ABL1. Only 5% of patients did not achieve an optimal response at 3 months, and the 10% BCR-ABL1 cutoff defined by RQ-PCR (IS) methods was unable to identify significant differences in the probabilities of achieving a complete cytogenetic response (CCyR) (50% vs. 87%, p = 0.1) or a major molecular response (MMR) (60% vs. 80%, p = 0.29) by 12 months. In contrast, a cutoff of 1.5% more accurately identified differences in the probabilities of achieving CCyR (98% vs. 54%, p<0.001) and MMR (88% vs. 56%, p<0.001) by 12 months, as well as probabilities of treatment changes (p = 0.005). Therefore, when using the Xpert BCR-ABL1 assay, a cutoff of 1.5% at 3 months could with high probability identify patients able to achieve an optimal response at 12 months.
Archive | 2010
Pablo Vicente Escribá Ruiz; Xavier Busquets Xaubet; Silvia Teres Jiménez; Gwendolyn Barceló Coblijn; Victoria Lladó Cañellas; Amaia Marcilla Etxenike; Maria Laura Martin; Monica Higuera Urbano; Rafael Álvarez Martínez; Daniel López
Archive | 2012
Pablo Vicente Escribá Ruiz; Maria Laura Martin; María Antònia Noguera Salvà; Xavier Busquets Xaubet; David López Jiménez; Maitane Ibarguren Aizpitarte; José Javier Soto Salvador; Miguel Yus Astiz
Chemistry and Physics of Lipids | 2010
Daniel López; Maria Laura Martin; Maria Antònia Noguera-Salvà; Silvia Terés; Gwendolyn Barceló Coblijn; Pablo V. Escribá; Xavier Busquets