María Laura Uhrig
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Laura Uhrig.
Biochemical Journal | 1999
Alicia S. Couto; Emilia A. Kimura; Valnice J. Peres; María Laura Uhrig; Alejandro M. Katzin
N-glycosylation of proteins is required for the intra-erythrocytic schizogony of Plasmodium falciparum. In eukaryotic cells, this process involves the transfer of oligosaccharides from a dolichyl pyrophosphate derivative to asparagine residues. We have identified dolichol, dolichyl phosphate and dolichyl pyrophosphate species of 11 and 12 isoprenoid residues by metabolic labelling with [(3)H]farnesyl pyrophosphate, [(3)H]geranylgeranyl pyrophosphate and [(14)C]acetate in the different intra-erythrocytic stages of P. falciparum. This is the first demonstration of short-chain dolichols in the phylum Apicomplexa. The results demonstrate the presence of an active isoprenoid pathway in the intra-erythrocytic stages of P. falciparum. Parasites treated with mevastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, show depressed biosynthesis of dolichol, dolichyl phosphate and isoprenoid pyrophosphate. This effect is observed in all intra-erythrocytic stages of the parasite life cycle, but is most pronounced in the ring stage. N-linked glycosylation of proteins was inhibited in the ring and young-trophozoite stages after mevastatin treatment of parasite cultures. Therefore the isoprenoid pathway may represent a different approach to the development of new anti-malarial drugs.
Journal of Organic Chemistry | 2011
Alejandro J. Cagnoni; Oscar Varela; Sébastien G. Gouin; José Kovensky; María Laura Uhrig
The synthesis of multivalent glycoclusters, designed to be compatible with biological systems, is reported. A variety of 1-thio-β-D-galactosides linked to a terminal triple bond through oligoethyleneglycol chains of variable lengths has been synthesized. Also, azide-containing oligosaccharide scaffolds were prepared from trehalose, maltose, and maltotriose by direct azidation with NaN(3)/PPh(3)/CBr(4). Click reaction between the thiogalactoside residues and the azide scaffolds under microwave irradiation afforded a family of glycoclusters containing 1 to 4 residues of 1-thio-β-D-galactose. The yields went from moderate to excellent, depending on the valency of the desired product. Deacetylation with Et(3)N/MeOH/H(2)O led to the final products. Complete characterization of the products was performed by NMR spectroscopy and HR-MS techniques. Their activities as inhibitors of β-galactosidase from E. coli were determined by using the Lineweaver-Burk method. The use of hydrophilic carbohydrate scaffolds for the synthesis of multivalent galactosides represents an interesting approach to improve their pharmacokinetics and bioavailability. In addition, the presence of the thioglycosidic bond will improve their stability in biological fluids.
Biochimica et Biophysica Acta | 1996
María Laura Uhrig; Alicia S. Couto; Walter Colli; Rosa M. de Lederkremer
In vivo labeling experiments with [3H]palmitic acid, [3H]inositol, and [3H]glucose allowed the identification of two main classes of inositolphospholipids (IPLs) from the trypomastigote stage of Trypanosoma cruzi. Purification of these compounds was achieved by ion-exchange chromatography, high performance liquid chromatography and thin layer chromatography. Specific phosphatidyl-inositol phospholipase C digestion, dephosphorylation and acid methanolysis showed a ceramide structure for the lower migrating IPL1. Palmitoyldihydrosphingosine and palmitoylsphingosine were detected by reverse-phase thin-layer chromatography. On the other hand, IPL2 showed to be a mixture of diacylglycero- and alkylacylglycero-phospholipids in a 1:1 ratio. After PI-PLC digestion, the lipids were separated by preparative TLC and individually analysed. The diacylglycerol contained mainly C18:0 fatty acid together with a low amount of C16:0. Hexadecylglycerol esterified with the C18:0 fatty acid was the only alkylacylglycerol detected. The C18:2 and C18:1 fatty acids, preponderant in the PI molecules of epimastigote forms, were not detected in trypomastigote forms. This is the first report on inositol phospholipids, putative precursors of lipid anchors in the infective stage of T. cruzi.
Journal of Organic Chemistry | 2008
Verónica E. Manzano; María Laura Uhrig; Oscar Varela
3,4-Anhydro hexopyranosides have been prepared by diastereoselective epoxidation of derivatives of 2-propyl 3,4-dideoxy-alpha-D-erythro-hex-3-enopyranoside (5), selectively protected at HO-2 and HO-6. The allylic group at C-2, in 5 and derivatives, plays a critical role in the facial selectivity of the epoxidation reaction. Thus, the free HO-2 in 3 (the 6-O-acetyl derivative of 5) directs the attack of m-chloroperbenzoic acid from the more hindered alpha face of the molecule to give 2-propyl 6-O-acetyl-3,4-anhydro-alpha-D-allopyranoside (7) accompanied by the beta epoxide 6 as a very minor product. Reverse diastereoselectivity has been obtained when the HO-2 in 3 was substituted by a bulky tert-butyldimethylsilyl (TBS) group. In this case, the major isomer was the 2-O-TBS derivative of 6 (alpha-D-galacto configuration). The ring-opening of sugar epoxides by nucleophilic per-O-acetyl-1-thio-beta-D-glucopyranose (11) was employed as a convenient approach to the synthesis of (1-->3)- and (1-->4)-thiodisaccharides. For example, ring-opening of the oxirane 7 by 11 led to the expected regioisomeric per-O-acetyl thiodisaccharides beta-D-Glc-S-(1-->3)-4-thio-alpha-D-Glc-O-iPr (12) and beta-D-Glc-S-(1-->4)-4-thio-alpha-D-Gul-O-iPr (13). Regioselectivity in the construction of the (1-->4)-thioglycosidic linkage could be achieved by hindering C-3 of the 3,4-anhydro sugar with a bulky silyloxy group at the vicinal C-2. For instance, coupling of the 2-O-TBS derivative of 7 with 11 led regioselectively to the protected thiodisaccharide beta-D-Glc-S-(1-->4)-4-thio-alpha-D-Glc-O-iPr (27). The utility of the approach was demonstrated through the synthesis of sulfur-linked analogues of naturally occurring (laminarabiose and cellobiose) and non-natural disaccharides (i.e., beta-D-Glc-(1-->4)-alpha-D-Gul).
Journal of Organic Chemistry | 2012
Evangelina Repetto; Verónica E. Manzano; María Laura Uhrig; Oscar Varela
Satisfactory procedures are described for the synthesis of 5,6- and 3,4-thiirane derivatives from the respective hexofuranose or hexopyranose epoxide precursors. The controlled ring-opening reaction of thiiranes by 1-thioaldoses was successfully accomplished to afford, regio- and stereoselectively, β-S-(1→4)-3,4-dithiodisaccharides. For instance, the regioselective attack of per-O-acetyl-1-thioglucose (16) to C-4 of 2-propyl 2,6-di-O-acetyl-3,4-epithio-α-D-galactopyranoside (14) gave the derivative of Glcp-β-S-(1→4)-3,4-dithioGlcp-O-iPr (17). This thiodisaccharide was accompanied by the (1→3)-disulfide 18, formed between 16 and 17, and the symmetric (3→3)-disulfide 19, which resulted from the oxidative dimerization of 17. However, the S-acetyl derivative of 17 could be obtained in good yield (62%) by LiAlH(4) reduction of the crude mixture 17-19, followed by acetylation. The same sequence of reactions starting from 14 and the 1-thiolate of Galp afforded the per-O,S-acetyl derivative of Galp-β-S-(1→4)-3,4-dithio-α-D-Glcp-O-iPr (23), which was selectively S-deacetylated to give 25. The dithiosaccharides 17 and 25 are 3,4-di-S-analogues of derivatives of the natural disaccharides cellobiose and lactose, respectively. The ring-opening reaction of 5,6-epithiohexofuranoses of D-galacto (8) or L-altro (11) configuration with 1-thioaldoses was also regio- and stereoselective to give the respective β-S-(1→6)-linked 5,6-dithiodisaccharides 26 or 29 in excellent yields. Glycosylation of the free thiol group of 17, 25, or 26, using trichloroacetimidates as glycosyl donors, led to the corresponding branched dithiotrisaccharides. Some of them are sulfur analogues of derivatives of branched trisaccharides found in natural polysaccharides.
Bioorganic & Medicinal Chemistry | 2009
Alejandro J. Cagnoni; María Laura Uhrig; Oscar Varela
Beta-(1-->4)-thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(beta-D-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(beta-D-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH(4) or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH(4)-THF at 0 degrees C gave a 3-deoxy-4-S-(beta-D-Xylp)-4-thio-alpha-D-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-beta-D-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at -78 degrees C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the beta-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (K(i)=0.80 mM), whereas 19 was a mixed-type inhibitor (K(i)=32 microM).
Journal of Organic Chemistry | 2014
Alejandro J. Cagnoni; José Kovensky; María Laura Uhrig
Herein, we describe the design and synthesis of a novel family of hydrolytically stable glycoclusters bearing thiodigalactoside (TDG) analogues as recognition elements of β-galactoside binding lectins. The TDG analogue was synthesized by thioglycosylation of a 6-S-acetyl-α-D-glucosyl bromide with the isothiouronium salt of 2,3,4,6-tetra-O-acetyl-β-D-galactose. Further propargylation of the TDG analogue allowed the coupling to azido-functionalized oligosaccharide scaffolds through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) under microwave activation. The final mono-, di-, and tetravalent ligands were resistant to enzymatic hydrolisis by Escherichia coli β-galactosidase. Binding affinities to peanut agglutinin and human galectin-3 were measured by isothermal titration calorimetry which showed K(a) constants in the micromolar range as well as a multivalent effect. Monovalent ligand exhibited a binding affinity higher than that of thiodigalactoside. Docking studies performed with a model ligand on both β-galactoside binding lectins showed additional interactions between the triazole ring and lectin amino acid residues, suggesting a positive effect of this aromatic residue on the biological activity.
Chemistry: A European Journal | 2013
Luis P. Calle; Virginia Roldós; F. Javier Cañada; María Laura Uhrig; Alejandro J. Cagnoni; Verónica E. Manzano; Oscar Varela; Jesús Jiménez-Barbero
Herein, we describe the use of thioglycosides as glycosidase inhibitors by employing novel modifications at the reducing end of these glycomimetics. The inhibitors display a basic galactopyranosyl unit (1→4)-bonded to a 3-deoxy-4-thiopentopyranose moiety. The molecular basis of the observed inhibition has been studied by using a combination of NMR spectroscopy and molecular modeling techniques. It is demonstrated that these molecules are not recognized by Escherichia coli β-galactosidase in their ground-state conformation, with a conformational selection process taking place. In fact, the observed conformational distortion depends on the chemical nature of the compounds and results from the rotation around the glycosidic linkage (variation of Φ or Ψ) or from the deformation of the six-membered ring of the pentopyranose. The bound conformations of the ligand are adapted in the enzymatic pocket with a variety of hydrogen-bond, van der Waals, and stacking interactions.
Beilstein Journal of Organic Chemistry | 2014
María Emilia Cano; Rosalía Agusti; Alejandro J. Cagnoni; María Florencia Tesoriero; José Kovensky; María Laura Uhrig; Rosa M. de Lederkremer
Summary In this work we describe the synthesis of mono- and divalent β-N- and β-S-galactopyranosides and related lactosides built on sugar scaffolds and their evaluation as substrates and inhibitors of the Trypanosoma cruzi trans-sialidase (TcTS). This enzyme catalyzes the transfer of sialic acid from an oligosaccharidic donor in the host, to parasite βGalp terminal units and it has been demonstrated that it plays an important role in the infection. Herein, the enzyme was also tested as a tool for the chemoenzymatic synthesis of sialic acid containing glycoclusters. The transfer reaction of sialic acid was performed using a recombinant TcTS and 3’-sialyllactose as sialic acid donor, in the presence of the acceptor having βGalp non reducing ends. The products were analyzed by high performance anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). The ability of the different S-linked and N-linked glycosides to inhibit the sialic acid transfer reaction from 3’-sialyllactose to the natural substrate N-acetyllactosamine, was also studied. Most of the substrates behaved as good acceptors and moderate competitive inhibitors. A di-N-lactoside showed to be the strongest competitive inhibitor among the compounds tested (70% inhibition at equimolar concentration). The usefulness of the enzymatic trans-sialylation for the preparation of sialylated ligands was assessed by performing a preparative sialylation of a divalent substrate, which afforded the monosialylated compound as main product, together with the disialylated glycocluster.
Organic and Biomolecular Chemistry | 2012
Verónica E. Manzano; María Laura Uhrig; O. Varela
The ring-opening reaction of sugar 3,4-epoxides by 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranose (7) as a nucleophile led to (1 → 3)- and (1 → 4)-thiodisaccharides. High regio- and diastereoselectivities were achieved in the synthesis of the per-O-acetyl derivative of the β-D-Galp-S-(1 → 4)-4-thio-α-D-Glcp-O-iPr (10). Analogues of the 4-thiolactoside 10 have been prepared, with the β-D-Galp non-reducing end S-linked to D-Glcp, D-Gulp and D-Idop. A similar regioselective attack of 7 on C-4 of 2-propyl 3,6-di-O-acetyl-3,4-epithio-α-D-galactopyranoside (6) led to 2-propyl 3,4-dithiolactoside derivative 15. During this reaction the free 3-SH group of 15 underwent oxidative dimerization or oxidative coupling with the SH function of 7 to give the respective disulfides. Glycosylation of the thiol group of 15 using trichloroacetimidate derivatives of β-D-Galp or β-D-Galf afforded the corresponding branched dithiotrisaccharides. The free compounds were evaluated as inhibitors of the E. coli β-galactoside. The bis(2-propyl 3,4-dithiolactosid-3-yl)-disulfide, obtained from 15, displayed the strongest inhibitory activity in these series of glycomimetics and proved to be a non-competitive inhibitor (K(i) = 95 μM).