Maria Lepore
Istituto Nazionale di Fisica Nucleare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Lepore.
Biosensors and Bioelectronics | 2010
Marianna Portaccio; D. Di Tuoro; Fabiana Arduini; Maria Lepore; Damiano Gustavo Mita; Nadia Diano; L. Mita; Danila Moscone
A thionine-modified carbon paste electrode for catechol and Bisphenol A (BPA) detection is presented. Graphite powder was modified by adsorbing thionine as electrochemical mediator. The electrochemical response of the modified carbon paste electrode (CPE) was determined before electrode modification with tyrosinase. Then, tyrosinase was added in order to assemble a biosensor. Once established the best operative conditions, an interelectrode reproducibility around 7% was obtained and the resulting biosensor showed improved sensitivities and (S=139.6+/-1.1 nA/microM for catechol and S=85.4+/-1.5 nA/microM for BPA) in comparison with the biosensor constructed without thionine (S=104.4+/-0.5 nA/microM for catechol and S=51.1+/-0.6 nA/microM for BPA) and low detection limits (0.15 microM for both the electrodes and analytes). Also the comparison with the results reported in the literature showed higher sensitivity and lower detection limit for our biosensor. Moreover the functioning of the thionine-tyrosinase CPE was validated following a biodegradation process of water polluted by BPA and comparing the time changes of BPA concentration inferred by the biosensor calibration curve and those determined by means of HPLC measurements.
Food Chemistry | 2011
I. Delfino; C. Camerlingo; Marianna Portaccio; B. Della Ventura; L. Mita; Damiano Gustavo Mita; Maria Lepore
The potential of Raman spectroscopy with excitation in the visible as a tool for quantitative determination of single components in food industry products was investigated by focusing the attention on glucose content in commercial sport drinks. At this aim, micro-Raman spectra in the 600-1600cm(-1) wavenumber shift region of four sport drinks were recorded, showing well defined and separated vibrational fingerprints of the various contained sugars (glucose, fructose and sucrose). By profiting of the spectral separation of some peculiar peaks, glucose content was quantified by using a multivariate statistical analysis based on the interval Partial Least Square (iPLS) approach. The iPLS model needed for data analysis procedure was built by using glucose aqueous solutions at known sugar concentrations as calibration data. This model was then applied to sport drink spectra and gave predicted glucose concentrations in good agreement with the values obtained by using a biochemical assay. These results represent a significant step towards the development of a fast and simple method for the on-line glucose quantification in products of food and beverage industry.
International Journal of Biological Macromolecules | 2008
Katya Gabrovska; Ivaylo Marinov; Tzonka Godjevargova; Marianna Portaccio; Maria Lepore; Valentina Grano; Nadia Diano; Damiano Gustavo Mita
Acetylcholinesterase (AChE) was immobilized on two different composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus a layer of tethered chitosan of different molecular weight, 10 kDa or 400 kDa. AChE was also directly immobilized on a chemically modified PAN membrane with NaOH and ethylenediamine (EDA) without chitosan. To know how the different supports affected the enzyme activity and the kinetic parameters, the AChE activity was studied in the soluble form and in the insoluble form with all the three types of modified PAN membranes. The best performance was obtained by the modified PAN membrane having the chitosan with the lower molecular weight. The results concerning the AChE inhibition by methyl-paraoxon and the subsequent reactivation by pyridine-2-aldoxime methochloride (2-PAM) are presented and discussed. The composite membrane having chitosan with the lower molecular weight appeared to be potentially useful for applications in the field of biosensors.
Sensors | 2007
C. Camerlingo; F. Zenone; Ines Delfino; Nadia Diano; Damiano Gustavo Mita; Maria Lepore
Liquid samples of clarified apple and apricot juices at different production stages were investigated using visible light micro-Raman spectroscopy in order to assess its potential in monitoring fruit juice production. As is well-known, pectin plays a strategic role in the production of clarified juice and the possibility of using Raman for its detection during production was therefore evaluated. The data analysis has enabled the clear identification of pectin. In particular, Raman spectra of apple juice samples from washed and crushed fruits revealed a peak at 845 cm-1 (typical of pectin) which disappears in the Raman spectra of depectinised samples. The fructose content was also revealed by the presence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricot juice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were also highlighted. Present results resulted interesting for the exclusive use of optical methods for the quantitative determination of the above-mentioned substances in place of the biochemical assays generally used for this purpose, which are time consuming and require different chemical reagents for each of them.
Sensors | 2011
Rosario Esposito; Bartolomeo Della Ventura; Sergio De Nicola; C. Altucci; Raffaele Velotta; Damiano Gustavo Mita; Maria Lepore
A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM.
Materials Science and Engineering: C | 2013
Ines Delfino; Marianna Portaccio; B. Della Ventura; Damiano Gustavo Mita; Maria Lepore
Glucose oxidase (GOD) immobilized into sol-gel matrices was studied by using Micro-Attenuated Total Reflection Fourier Transform Infrared (micro-ATR FT-IR) spectroscopy in order to characterize enzyme distribution and secondary structure in systems with valuable potentialities in amperometric and optical biosensing. Spectra were acquired in the 4000-600 cm(-1) frequency region and the analysis of specific fingerprints in the FT-IR spectra evidenced that the enzyme was actually immobilized in the matrix. The enzyme spatial distribution was obtained by examining the amide I and amide II band region of spectra from defined sample positions. The deconvolution of the amide I band in terms of lorentzian functions provided information on the secondary structure of the immobilized GOD. By this approach a macroscopic preservation of GOD activity upon immobilization was evidenced along with the existence of some matrix sites with locally inactivated GOD. To our knowledge this is the first example of point-by-point characterization of conformational changes of immobilized enzyme by means of micro-ATR infrared spectroscopy, thus confirming that this technique can be usefully employed for a non- or minimally-invasive detailed micro-characterization of catalytic supports in order to improve their functionality.
Sensors | 2008
Carlo Camerlingo; F. Zenone; Giuseppe Perna; V. Capozzi; Nicola Cirillo; Giovanni Maria Gaeta; Maria Lepore
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.
Sensors | 2007
Paola De Luca; Maria Lepore; Marianna Portaccio; Rosario Esposito; Sergio Rossi; U. Bencivenga; Damiano Gustavo Mita
Changes in steady-state UV fluorescence emission from free or immobilized glucose oxidase have been investigated as a function of glucose concentration. Immobilized GOD has been obtained by entrapment into a gelatine membrane. Changes in steady-state UV fluorescence have been quantitatively characterized by means of optokinetic parameters and their values have been compared with those previously obtained for FAD fluorescence in the visible range. The results confirmed that greater calibration ranges are obtained from UV signals both for free and immobilized GOD in respect to those obtained under visible fluorescence excitation. An alternative method to the use UV fluorescence for glucose determination has been investigated by using time course measurements for monitoring the differential fluorescence of the redox forms of the FAD in GOD. Also in this case quantitative analysis have been carried out and a comparison with different experimental configurations has been performed. Time coarse measurements could be particularly useful for glucose monitoring in complex biological fluids in which the intrinsic UV fluorescence of GOD could be not specific by considering the presence of numerous proteins.
Journal of Biomedical Optics | 2001
Victor Chernomordik; Amir H. Gandjbakhche; Maria Lepore; Rosario Esposito; Ines Delfino
Simple analytical expressions for the point spread function (PSF) at different depths can save computation time and improve the performance of inverse algorithms for optical imaging. In particular, application of such formulas simplifies quantification of the optical characteristics of tissue abnormalities inside highly scattering media. Earlier it was shown within the random walk theory framework that the PSF for time-resolved transillumination imaging through a highly scattering slab is well represented by a Gaussian. We have experimentally validated a simple formula of the random walk model for the effective width of this Gaussian, as a function of time delay, at different depths of the target. Presented analysis of published experimental data, concerning effective width of the PSF, for a slab of considerably smaller thickness also demonstrates good agreement between the data and predictions of our model. This PSF width determines spatial resolution of the time-resolved imaging and is widely discussed in the literature.
Journal of Biomedical Optics | 2015
Ines Delfino; Giuseppe Perna; Maria Lasalvia; V. Capozzi; Lorenzo Manti; Carlo Camerlingo; Maria Lepore
Abstract. A micro-Raman spectroscopy investigation has been performed in vitro on single human mammary epithelial cells after irradiation by graded x-ray doses. The analysis by principal component analysis (PCA) and interval-PCA (i-PCA) methods has allowed us to point out the small differences in the Raman spectra induced by irradiation. This experimental approach has enabled us to delineate radiation-induced changes in protein, nucleic acid, lipid, and carbohydrate content. In particular, the dose dependence of PCA and i-PCA components has been analyzed. Our results have confirmed that micro-Raman spectroscopy coupled to properly chosen data analysis methods is a very sensitive technique to detect early molecular changes at the single-cell level following exposure to ionizing radiation. This would help in developing innovative approaches to monitor radiation cancer radiotherapy outcome so as to reduce the overall radiation dose and minimize damage to the surrounding healthy cells, both aspects being of great importance in the field of radiation therapy.