Maria Liria Turco Liveri
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Liria Turco Liveri.
International Journal of Pharmaceutics | 2013
Ilaria Calabrese; Gennara Cavallaro; Cinzia Scialabba; Mariano Licciardi; Marcello Merli; Luciana Sciascia; Maria Liria Turco Liveri
The adsorption profiles of the antibiotic metronidazole (MNE) into the K10-montmorillonite (MMT-K10) clay and the subsequent release have been investigated as a function of pH and MNE/MMT-K10 ratio, in order to evaluate the potential of the MNE/MMT-K10 hybrids as controlled drug delivery system. The adsorption mechanism has been first elucidated by performing complementary equilibrium and kinetic studies and through the X-ray diffractometry (XRD) characterization of the obtained composite materials. The gathered results allowed us to propose a mechanism consisting of a multi-step pathway involving the neutral and the cationic form of the drug, which interact with different sites of the clay surfaces, i.e. the interlayer region and the faces of the lamella. In a second step the drug release kinetics has been studied under physiological pH mimicking conditions simulating the oral drug administration and delivery. For the sake of comparison the commercial formulation has also been employed for the release studies. The investigation of the release profiles and the comparison with the commercial formulation of the drug reveal that the new-tailor made formulation could be fruitful exploited for successfully prolonged the action of drug in the desired site.
Journal of Physical Chemistry B | 2008
Federico Rossi; Renato Lombardo; Luciana Sciascia; Carmelo Sbriziolo; Maria Liria Turco Liveri
The effects of the anionic surfactant sodium dodecyl sulfate (SDS) on the spatio-temporal and temporal dynamics of the ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction have been studied over a wide surfactant concentration range. For the first time, investigations were performed also for unstirred systems. The presence of SDS in the reaction mixture influences the oscillatory parameters to an extent that significantly depends on the surfactant concentration. The trend of the wave speed v upon the increasing amount of SDS was found to have a maximum at [SDS] = 0.075 mol dm (-3) ( v = 0.071 mm s (-1)), after which the speed decreased to 0.043 mm s (-1) at [SDS] = 0.5 mol dm (-3), which is below the value found in the absence of the surfactant ( v = 0.055 mm s (-1)). The response of the oscillatory BZ system to the addition of SDS has been ascribed to two different causes: (a) the peculiar capability of the organized surfactant assemblies to affect the reactivity by selectively sequestering some key reacting species and (b) the modifications induced by SDS on the physical properties of the medium. These hypotheses have been corroborated by performing spectrophotometric investigations on the stirred BZ system. Complementary viscosity measurements gave useful hints for the clarification of the surfactant role.
Physical Chemistry Chemical Physics | 2010
Nadia Marchettini; Marcello Antonio Budroni; Federico Rossi; Marco Masia; Maria Liria Turco Liveri; Mauro Rustici
Chemical oscillations generated by the Belousov-Zhabotinsky reaction in batch unstirred reactors, show a characteristic chaotic transient in their dynamical regime, which is generally found between two periodic regions. Chemical chaos starts and finishes by following a direct and an inverse Ruelle-Takens-Newhouse scenario, respectively. In previous works we showed, both experimentally and theoretically, that the complex oscillations are generated by the coupling among the nonlinear kinetics and the transport phenomena, the latter due to concentration and density gradients. In particular, convection was found to play a fundamental role. In this paper, we develop a reaction-diffusion-convection model to explore the influence of the reagents consumption (BrO in particular) in the inverse transition from chaos to periodicity. We demonstrated that, on the route towards thermodynamic equilibrium, the reagents concentration directly modulates the strength of the coupling between chemical kinetics and mass transport phenomena. An effective sequential decoupling (reaction-diffusion-convection --> reaction-diffusion --> reaction) takes place upon the reagents consumption and this is at the basis of the transition from chaos to periodicity.
Journal of Agricultural and Food Chemistry | 2009
Maria Liria Turco Liveri; Luciana Sciascia; Mario Allegra; Luisa Tesoriere; Maria A. Livrea
The solubilization site of indicaxanthin (Ind) in lipid bilayers was investigated by the kinetics of Ind oxidation by peroxyl radicals in water and in aqueous/L-alpha-dipalmitoyl-phosphatidylcholine (DPPC) vesicles, pH 7.4, and 37.0 and 48.0 degrees C, that is, in a gel-like and a crystal liquidlike bilayer state, respectively. The time-dependent Ind absorbance decay, matched with a successful simulation of the reaction kinetic mechanism by Gepasi software, supported a multistep pathway. Computer-assisted analysis allowed calculation of the rate constants associated with the reactions involved, the values of which decreased with increasing DPPC concentration. The binding constant calculated according to a pseudo two-phase distribution model did not vary with the physicochemical state of the vesicle, indicating location of Ind in a region whose state is not affected by temperature changes, at the interface between hydrophobic core and hydrophilic head groups. Other measurements carried out in the presence of dimyristoyl-phosphatidylcholine vesicles, indicated that the phytochemical was confined to the aqueous phase.
Journal of Colloid and Interface Science | 2014
Salvatore Cataldo; Antonio Gianguzza; Marcello Merli; N. Muratore; Daniela Piazzese; Maria Liria Turco Liveri
Systematic kinetic and equilibrium studies on the lead ions removal ability by Ca-alginate gel beads have been performed by varying several internal parameters, namely, number of gel beads, nature and composition of the ionic medium and pH, which allowed us to model a wastewater in order to closely reproduce the composition of a real sample. Moreover, the effects brought about the different ionic species present in the reacting medium have been evaluated. Differential Pulse Anodic Stripping Voltammetry (DP-ASV), has been systematically used to perform kinetic and equilibrium measurements over continuous time in a wide range of concentration. Kinetic and equilibrium data have been quantitatively analyzed by means of robust approach both for the non-linear regression and the subsequent residuals analysis in order to significantly improve the results in terms of precision and accuracy. Alginate gel beads have been characterized by SEM and an investigation on their swelling behavior has also been made. Removal efficiency of the calcium-alginate gel beads has been calculated and results obtained have showed a relevant dependence on ionic strength, composition of ionic media, pH of solution and number of gel beads. The number of gel beads takes part as key crucial components, i.e., the higher the number of beads the greater the amount of Pb(II) species removed from the sample, the lower the time needed to reach the maximum removal efficiency of 90%.
Journal of Physical Chemistry B | 2012
Maria Liria Turco Liveri; Mariano Licciardi; Luciana Sciascia; Gaetano Giammona; Gennara Cavallaro
Complementary kinetic and equilibrium studies on the solubilization process of the sparingly water soluble tamoxifen (TAM) drug in polymeric aqueous solutions have been performed by using the spectrophotometric method. In particular, the amphiphilic copolymers obtained by derivatization of polymeric chain of poly(N-2-hydroxyethyl)-dl-aspartamide, PHEA, with poly(ethylene glycol)s, PEG (2000 or 5000 Da), and/or hexadecylamine chain, C16, namely PHEA-PEG2000-C16, PHEA-PEG5000-C16, PHEA-C16, have been employed. Preliminary to the kinetic and equilibrium data quantitative treatment, the molar absorption coefficient of TAM in polymeric micelle aqueous solution has been determined. By these studies the solubization sites of TAM into the polymeric micelles have been determined and the solubilization mechanism has been elucidated through a nonconventional approach by considering the TAM partitioned between three pseudophases, i.e., the aqueous pseudophase, the hydrophilic corona, and the hydrophobic core. The simultaneous solution of the rate laws associated with each step of the proposed mechanism allowed the calculation of the rate constants associated with the involved processes, the values of which are independent of both the copolymer concentration and nature, with the exception of the rate of the TAM transfer from the corona to the core. This has been attributed to the steric barrier, represented by the corona, which hampers the solubilization into the core. The binding constant values of the TAM to the hydrophilic corona of the polymeric micelles, calculated through the quantitative analysis of the equilibrium data, depend on the thickness of the hydrophilic headgroup, while those of the hydrophobic core are almost independent of the copolymer type. Further confirmation to the proposed solubilization mechanism has been provided by performing the kinetic and equilibrium measurements in the presence of PHEA-PEG2000 and PHEA-PEG5000 copolymers.
New Journal of Chemistry | 2004
Maria Liria Turco Liveri; Renato Lombardo; Carmelo Sbriziolo; Guido Viscardi; Pierluigi Quagliotto
The incorporation of the bidentate ligand pyridine-2-azo-p-dimethylaniline (PADA) into micellar aggregates of the dimeric cationic surfactants propanediyl-, hexanediyl- and dodecanediyl-α,ω-bis(dimethylcetylammonium nitrate) (16-3-16,2NO3−, 16-6-16,2NO3− and 16-12-16,2NO3−, respectively) has been studied at 25°C by examining the kinetics of the complexation reaction of the Ni(II) ion with this ligand. For comparison, cetyltrimethylammonium nitrate (CTAN), which can be considered as the “monomeric” surfactant of 16-3-16,2NO3−, has also been used. The kinetic data have shown that, for 16-3-16,2NO3− and CTAN, at a surfactant concentration below the critical micelle concentration (cmc) the rate of the complex formation reaction does not significantly depend on the surfactant concentration, while it slightly decreases in the presence of the other two gemini surfactants. Beyond this critical value, in all cases examined, the rate constant is conspicuously inhibited by the presence of surfactant. The results below the cmc have been explained in the light of conductometric measurements, which have evidenced that both 16-6-16,2NO3− and 16-12-16,2NO3− form premicellar aggregates while 16-3-16,2NO3− and CTAN do not. The kinetic data above the cmc conform to a reaction mechanism that implies partitioning of the ligand only between the aqueous and the micellar pseudo-phases. The quantitative analysis of the kinetic data allows us to estimate the binding of PADA to the cationic micellar aggregates used. Solubilization of PADA in the micelles markedly depends on the nature of the surfactant used and, in particular, decreases on either increasing the spacer chain length or changing the surfactant type, namely conventional or gemini. These trends have been ascribed to the change in the shape of the micellar aggregates and, consequently, the hydrophobic character of the micelles, which can be modulated either by insertion of the spacer in the micellar interior or by using a conventional surfactant. The incremental free energy of transfer of a methylene group in the spacer chain from the aqueous to the micellar pseudo-phase has also been determined. The present data evidence that binding of PADA to micellar aggregates is primarily governed by hydrophobic interactions and the solubilization capability of gemini aggregates is superior to that of conventional micelles.
Journal of Colloid and Interface Science | 2012
Susanna Guernelli; Antonella Fontana; Renato Noto; Domenico Spinelli; Maria Liria Turco Liveri
Rate constants for the mononuclear rearrangement (MRH) of Z-phenylhydrazones of some 5-substituted-3-benzoyl-1,2,4-oxadiazoles in water have been measured in the presence of zwitterionic micelles. The use of micellized N-tetradecyl-N,N-dimethylamineoxide (C(14)DMAO) as the reaction medium allowed to solubilize the otherwise water-insoluble oxadiazoles. Micellar rate effects were analyzed by using a simple pseudo-phase model and compared with those obtained in non-ionic micelles (Triton X-100). Evidence that both the rate of the rearrangement reaction and the binding of the substrates to the micelles are mainly governed by substrate hydrophobicity is obtained. The disagreement with the primarily sterically controlled MRH in Triton X-100 micelles highlights large and intriguing differences between the two micellar environments.
Adsorption-journal of The International Adsorption Society | 2016
Maria Liria Turco Liveri; Marcello Merli; Giuseppe Lazzara; Luciana Sciascia; Giuseppe Cavallaro; Ilaria Calabrese
The present study was aimed at the preparation and characterization of tailor made hybrid materials, whose peculiar hosting capability could be exploited in biotechnological applications. With this purpose, the modification of K10 montmorillonite by intercalation of Tween 20 surfactant, was accomplished. The influence of two internal parameters, namely pH and surfactant/clay ratio, on the surfactant uptake ability by clay was investigated. The adsorption mechanism was elucidated on the basis of complementary kinetic and equilibrium studies and, then, corroborated by the useful information provided by the FT-IR, TGA and XRD characterization. The gathered results allow to draw the conclusion that the whole surfactant uptake is the result of two contributions: a site-limiting component, governed by negative cooperative interactions, which takes into account for the Tween 20 adsorption onto the pristine clay, and a non-specific linear partitioning component, related to the adsorption of the surfactant onto the in situ prepared organo-clay. Moreover, at strongly acidic pH, a mechanism consisting of two-steps pathways involving two non-energetically equivalent binding sites of the clay surfaces, was proposed, while, on increasing the pH, the clay interlayer becomes the sole available site for the surfactant uptake. In the light of the interesting results obtained, among the plethora of potential biotechnological applications, the present paper suggests the exploitation of the prepared organo-clays to improve the performance of either hydrophilic or hydrophobic drug carriers systems.
Soft Matter | 2011
Federico Rossi; Rosario Varsalona; Nadia Marchettini; Maria Liria Turco Liveri
The transition from planar fronts, trigger waves or solitary pulses to spirals in excitable media, has attracted increasing interest in the past few decades, mainly because of its relevance for biological and medical applications. In this paper we describe a new and convenient method for spiral generation starting from symmetric wavefronts. By using the micelle-forming zwitterionic surfactant N-tetradecyl-N,N-dimethylamine oxide in a Belousov–Zhabotinsky solution, it is possible to control to a large extent the domains where spirals can be spontaneously generated. The mechanism responsible for the wavefront break up lies in the interaction of the propagating waves with the unexcitable regions formed by the interaction of the surfactant with some of the Belousov–Zhabotinsky key intermediates.