Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Lisa Dentici is active.

Publication


Featured researches published by Maria Lisa Dentici.


Nature Genetics | 2010

A restricted spectrum of NRAS mutations causes Noonan syndrome

Ion C. Cirstea; Kerstin Kutsche; Radovan Dvorsky; Lothar Gremer; Claudio Carta; Denise Horn; Amy E. Roberts; Francesca Lepri; Torsten Merbitz-Zahradnik; Rainer König; Christian P. Kratz; Francesca Pantaleoni; Maria Lisa Dentici; Victoria A. Joshi; Raju Kucherlapati; Laura Mazzanti; Stefan Mundlos; Michael A. Patton; Margherita Silengo; Cesare Rossi; Giuseppe Zampino; Cristina Digilio; Liborio Stuppia; Eva Seemanova; Len A. Pennacchio; Bruce D. Gelb; Bruno Dallapiccola; Alfred Wittinghofer; Mohammad Reza Ahmadian; Marco Tartaglia

Noonan syndrome, a developmental disorder characterized by congenital heart defects, reduced growth, facial dysmorphism and variable cognitive deficits, is caused by constitutional dysregulation of the RAS-MAPK signaling pathway. Here we report that germline NRAS mutations conferring enhanced stimulus-dependent MAPK activation account for some cases of this disorder. These findings provide evidence for an obligate dependency on proper NRAS function in human development and growth.


Human Mutation | 2009

Germline BRAF mutations in noonan, LEOPARD, and cardiofaciocutaneous Syndromes: Molecular diversity and associated phenotypic spectrum

Anna Sarkozy; Claudio Carta; Sonia Moretti; Giuseppe Zampino; Maria Cristina Digilio; Francesca Pantaleoni; Anna Paola Scioletti; Giorgia Esposito; Viviana Cordeddu; Francesca Lepri; Valentina Petrangeli; Maria Lisa Dentici; Grazia M.S. Mancini; Angelo Selicorni; Cesare Rossi; Laura Mazzanti; Bruno Marino; Giovanni Battista Ferrero; Margherita Silengo; Luigi Memo; Franco Stanzial; Francesca Faravelli; Liborio Stuppia; Efisio Puxeddu; Bruce D. Gelb; Bruno Dallapiccola; Marco Tartaglia

Noonan, LEOPARD, and cardiofaciocutaneous syndromes (NS, LS, and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS–mitogen‐activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N=270), LS (N=6), and CFCS (N=33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1, or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and five individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer‐associated defects. NS‐causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared to the recurrent cancer‐associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions. Hum Mutat 0:1–8, 2009.


Heart | 2010

Familial transposition of the great arteries caused by multiple mutations in laterality genes

Alessandro De Luca; Anna Sarkozy; Federica Consoli; Rosangela Ferese; Valentina Guida; Maria Lisa Dentici; Rita Mingarelli; Emanuele Bellacchio; Giulia Tuo; Giuseppe Limongelli; Maria Cristina Digilio; Bruno Marino; Bruno Dallapiccola

Background The pathogenesis of transposition of the great arteries (TGA) is still largely unknown. In general, TGA is not associated with the more common genetic disorders nor with extracardiac anomalies, whereas it can be found in individuals with lateralisation defects, heterotaxy and asplenia syndrome (right isomerism). Objective To analyse genes previously associated with heterotaxy in order to assess mutations in familial TGA unassociated with other features of laterality defects. Methods Probands of seven families with isolated TGA and a family history of concordant or discordant congenital heart disease were screened for mutations in the ZIC3, ACVR2B, LEFTYA, CFC1, NODAL, FOXH1, GDF1, CRELD1, GATA4 and NKX2.5 genes. Results Mutation analysis allowed the identification of three sequence variations in two out of seven TGA probands. A FOXH1 (Pro21Ser) missense variant was found in a proband who was also heterozogous for an amino acid substitution (Gly17Cys) in the ZIC3 gene. This ZIC3 variant was also found in another family member with a second sequence variation (Val150Ile) in the NKX2.5 gene homeodomain who was affected by multiple ventricular septal defects. A second proband was found to harbour a splice site variant (IVS2-1G→C) in the NODAL gene. Conclusions The present study provides evidence that some cases of familial TGA are caused by mutations in laterality genes and therefore are part of the same disease spectrum of heterotaxy syndrome, and argues for an oligogenic or complex mode of inheritance in these pedigrees.


Nature Genetics | 2015

Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome

Fanny Kortüm; Viviana Caputo; Christiane K. Bauer; Lorenzo Stella; Andrea Ciolfi; Malik Alawi; Gianfranco Bocchinfuso; Elisabetta Flex; Stefano Paolacci; Maria Lisa Dentici; Paola Grammatico; Georg Christoph Korenke; Vincenzo Leuzzi; David Mowat; Lal. D.V. Nair; Thi Tuyet Mai Nguyen; Patrick Thierry; Susan M. White; Bruno Dallapiccola; Antonio Pizzuti; Philippe M. Campeau; Marco Tartaglia; Kerstin Kutsche

Zimmermann-Laband syndrome (ZLS) is a developmental disorder characterized by facial dysmorphism with gingival enlargement, intellectual disability, hypoplasia or aplasia of nails and terminal phalanges, and hypertrichosis. We report that heterozygous missense mutations in KCNH1 account for a considerable proportion of ZLS. KCNH1 encodes the voltage-gated K+ channel Eag1 (Kv10.1). Patch-clamp recordings showed strong negative shifts in voltage-dependent activation for all but one KCNH1 channel mutant (Gly469Arg). Coexpression of Gly469Arg with wild-type KCNH1 resulted in heterotetrameric channels with reduced conductance at positive potentials but pronounced conductance at negative potentials. These data support a gain-of-function effect for all ZLS-associated KCNH1 mutants. We also identified a recurrent de novo missense change in ATP6V1B2, encoding the B2 subunit of the multimeric vacuolar H+ ATPase, in two individuals with ZLS. Structural analysis predicts a perturbing effect of the mutation on complex assembly. Our findings demonstrate that KCNH1 mutations cause ZLS and document genetic heterogeneity for this disorder.


Human Mutation | 2011

SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype–phenotype correlations†

Francesca Lepri; Alessandro De Luca; Lorenzo Stella; Cesare Rossi; Giuseppina Baldassarre; Francesca Pantaleoni; Viviana Cordeddu; Bradley Williams; Maria Lisa Dentici; Viviana Caputo; Serenella Venanzi; Michela Bonaguro; Ines Kavamura; Maria Felicia Faienza; Alba Pilotta; Franco Stanzial; Francesca Faravelli; Orazio Gabrielli; Bruno Marino; Giovanni Neri; Margherita Silengo; Giovanni Battista Ferrero; Isabella Torrrente; Angelo Selicorni; Laura Mazzanti; Maria Cristina Digilio; Giuseppe Zampino; Bruno Dallapiccola; Bruce D. Gelb; Marco Tartaglia

Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS‐MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in‐frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1s recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype–phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies. Hum Mutat 32:760–772, 2011.


Clinical Genetics | 2011

New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle

A. De Luca; Anna Sarkozy; Rosangela Ferese; F Consoli; Francesca Lepri; Maria Lisa Dentici; P Vergara; A De Zorzi; Paolo Versacci; Maria Cristina Digilio; Bruno Marino; Bruno Dallapiccola

De Luca A, Sarkozy A, Ferese R, Consoli F, Lepri F, Dentici ML, Vergara P, De Zorzi A, Versacci P, Digilio MC, Marino B, Dallapiccola B. New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle.


European Journal of Human Genetics | 2009

Spectrum of MEK1 and MEK2 gene mutations in cardio-facio-cutaneous syndrome and genotype–phenotype correlations

Maria Lisa Dentici; Anna Sarkozy; Francesca Pantaleoni; Claudio Carta; Francesca Lepri; Rosangela Ferese; Viviana Cordeddu; Simone Martinelli; Silvana Briuglia; Maria Cristina Digilio; Giuseppe Zampino; Marco Tartaglia; Bruno Dallapiccola

Cardio-facio-cutaneous syndrome (CFCS) is a rare disease characterized by mental retardation, facial dysmorphisms, ectodermal abnormalities, heart defects and developmental delay. CFCS is genetically heterogeneous and mutations in the KRAS, BRAF, MAP2K1 (MEK1) and MAP2K2 (MEK2) genes, encoding for components of the RAS–mitogen activated protein kinase (MAPK) signaling pathway, have been identified in up to 90% of cases. Here we screened a cohort of 33 individuals with CFCS for MEK1 and MEK2 gene mutations to further explore their molecular spectrum in this disorder, and to analyze genotype–phenotype correlations. Three MEK1 and two MEK2 mutations were detected in six patients. Two missense MEK1 (L42F and Y130H) changes and one in-frame MEK2 (K63_E66del) deletion had not been reported earlier. All mutations were localized within exon 2 or 3. Together with the available records, the present data document that MEK1 mutations are relatively more frequent than those in MEK2, with exons 2 and 3 being mutational hot spots in both genes. Mutational analysis of the affected MEK1 and MEK2 exons did not reveal occurrence of mutations among 75 patients with Noonan syndrome, confirming the low prevalence of MEK gene defects in this disorder. Clinical review of known individuals with MEK1/MEK2 mutations suggests that these patients show dysmorphic features, ectodermal abnormalities and cognitive deficit similar to what was observed in BRAF-mutated patients and in the general CFCS population. Conversely, congenital heart defects, particularly mitral valve and septal defects, and ocular anomalies seem to be less frequent among MEK1/MEK2 mutation-positive patients.


Genome Research | 2015

BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

Guntram Borck; Friederike Hög; Maria Lisa Dentici; Perciliz L. Tan; Nadine Sowada; Ana Medeira; Lucie Gueneau; Holger Thiele; Maria Kousi; Francesca Lepri; Larissa Wenzeck; Ian Blumenthal; Antonio Radicioni; Tito Livio Schwarzenberg; Barbara Mandriani; Rita Fischetto; Deborah J. Morris-Rosendahl; Janine Altmüller; Alexandre Reymond; Peter Nürnberg; Giuseppe Merla; Bruno Dallapiccola; Nicholas Katsanis; Patrick Cramer; Christian Kubisch

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.


American Journal of Human Genetics | 2012

Deficiency for the Ubiquitin Ligase UBE3B in a Blepharophimosis-Ptosis-Intellectual-Disability Syndrome

Lina Basel-Vanagaite; Bruno Dallapiccola; Ramiro Ramirez-Solis; Alexandra Segref; Holger Thiele; Andrew Edwards; Mark J. Arends; Xavier Miró; Jacqueline K. White; Julie Désir; Marc Abramowicz; Maria Lisa Dentici; Francesca Lepri; Kay Hofmann; Adi Har-Zahav; Edward Ryder; Natasha A. Karp; Jeanne Estabel; Anna Karin B Gerdin; Christine Podrini; Neil Ingham; Janine Altmüller; Gudrun Nürnberg; Peter Frommolt; Sonia Abdelhak; Metsada Pasmanik-Chor; Osnat Konen; Richard I. Kelley; Mordechai Shohat; Peter Nürnberg

Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated families presenting an autosomal-recessive blepharophimosis-ptosis-intellectual-disability syndrome characterized by developmental delay, growth retardation with a small head circumference, facial dysmorphisms, and low cholesterol levels. UBE3B encodes an uncharacterized E3 ubiquitin ligase. The identified UBE3B variants include one frameshift and two splice-site mutations as well as a missense substitution affecting the highly conserved HECT domain. Disruption of mouse Ube3b leads to reduced viability and recapitulates key aspects of the human disorder, such as reduced weight and brain size and a downregulation of cholesterol synthesis. We establish that the probable Caenorhabditis elegans ortholog of UBE3B, oxi-1, functions in the ubiquitin/proteasome system in vivo and is especially required under oxidative stress conditions. Our data reveal the pleiotropic effects of UBE3B deficiency and reinforce the physiological importance of ubiquitination in neuronal development and function in mammals.


Molecular Syndromology | 2010

RASopathies: Clinical Diagnosis in the First Year of Life

Maria Cristina Digilio; Francesca Lepri; Anwar Baban; Maria Lisa Dentici; Paolo Versacci; Rossella Capolino; Rosangela Ferese; A. De Luca; Marco Tartaglia; Bruno Marino; Bruno Dallapiccola

Diagnosis within Noonan syndrome and related disorders (RASopathies) still presents a challenge during the first months of life, since most clinical features used to differentiate these conditions become manifest later in childhood. Here, we retrospectively reviewed the clinical records referred to the first year of life of 57 subjects with molecularly confirmed diagnosis of RASopathy, to define the early clinical features characterizing these disorders and improve our knowledge on natural history. Mildly or markedly expressed facial features were invariably present. Congenital heart defects were the clinical issue leading to medical attention in patients with Noonan syndrome and LEOPARD syndrome. Feeding difficulties and developmental motor delay represented the most recurrent features occurring in subjects with cardiofaciocutaneous syndrome and Costello syndrome. Thin hair was prevalent among SHOC2 and BRAF mutation-positive infants. Café-au-lait spots were found in patients with LS and PTPN11 mutations, while keratosis pilaris was more common in individuals with SOS1, SHOC2 and BRAF mutations. In conclusion, some characteristics can be used as hints for suspecting a RASopathy during the first months of life, and individual RASopathies may be suspected by analysis of specific clinical signs. In the first year of life, these include congenital heart defects, severity of feeding difficulties and delay of developmental milestones, hair and skin anomalies, which may help to distinguish different entities, for their subsequent molecular confirmation and appropriate clinical management.

Collaboration


Dive into the Maria Lisa Dentici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Dallapiccola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Bruno Dallapiccola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Tartaglia

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Francesca Lepri

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bruno Marino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rossella Capolino

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Francesca Pantaleoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Antonio Novelli

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Viola Alesi

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge