Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María M. Amaral is active.

Publication


Featured researches published by María M. Amaral.


PLOS ONE | 2013

Action of shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells.

María M. Amaral; Flavia Sacerdoti; Carolina Jancic; Horacio A. Repetto; Adrienne W. Paton; James C. Paton; Cristina Ibarra

The hemolytic uremic syndrome (HUS) associated with diarrhea is a complication of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB) was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC) has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF) and platelet/endothelial cell adhesion molecule 1 (PECAM-1). HGEC also expressed the globotriaosylceramide (Gb3) receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 −a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.


Iubmb Life | 2013

Advances in pathogenesis and therapy of hemolytic uremic syndrome caused by shiga toxin-2

Cristina Ibarra; María M. Amaral; Marina S. Palermo

Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible to bloody diarrhea (hemorrhagic colitis) and the hemolytic uremic syndrome (HUS). STEC strains carry inducible lambda phages integrated into their genomes that encode Stx 1 and/or 2, with several allelic variants each one. O157:H7 is the serotype that was documented in the vast majority of HUS cases although non‐O157 serotypes have been increasingly reported to account for HUS cases. However, the outbreak that occurred in central Europe during late spring of 2011 showed that the pathogen was E. coli O104:H4. More than 4,000 persons were infected mainly in Germany, and it produced more than 900 cases of HUS resulting in 54 deaths. E. coli O104:H4 is a hybrid organism that combines some of the virulence genes of STEC and enteroaggregative E. coli specially production of Stx2 and the adherence mechanisms to intestinal epithelium. The differences in the epidemiology and presentation of E. coli pathogen meant a challenge for public health and scientific research to increase the knowledge of HUS‐pathophysiology and to improve available therapies to treat HUS.


Journal of Innate Immunity | 2016

Induction of Neutrophil Extracellular Traps in Shiga Toxin-Associated Hemolytic Uremic Syndrome

María Victoria Ramos; Maria Pilar Mejias; Florencia Sabbione; Romina Jimena Fernandez-Brando; Adriana Santiago; María M. Amaral; Ramón Exeni; Analía S. Trevani; Marina S. Palermo

Hemolytic uremic syndrome (HUS), a vascular disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure, is caused by enterohemorrhagic Shiga toxin (Stx)-producing bacteria, which mainly affect children. Besides Stx, the inflammatory response mediated by neutrophils (PMN) is essential to HUS evolution. PMN can release neutrophil extracellular traps (NET) composed of DNA, histones, and other proteins. Since NET are involved in infectious and inflammatory diseases, the aim of this work was to investigate the contribution of NET to HUS. Plasma from HUS patients contained increased levels of circulating free-DNA and nucleosomes in comparison to plasma from healthy children. Neutrophils from HUS patients exhibited a greater capacity to undergo spontaneous NETosis. NET activated human glomerular endothelial cells, stimulating secretion of the proinflammatory cytokines IL-6 and IL-8. Stx induced PMN activation as judged by its ability to trigger reactive oxygen species production, increase CD11b and CD66b expression, and induce NETosis in PMN from healthy donors. During HUS, NET can contribute to the inflammatory response and thrombosis in the microvasculature and thus to renal failure. Intervention strategies to inhibit inflammatory mechanisms mediated by PMN, such as NETosis, could have a potential therapeutic impact towards amelioration of the severity of HUS.


Molecular Immunology | 2008

GM-CSF enhances a CpG-independent pathway of neutrophil activation triggered by bacterial DNA.

Juan I. Fuxman Bass; María E. Alvarez; María Laura Gabelloni; Mónica Vermeulen; María M. Amaral; Jorge Geffner; Analía S. Trevani

We have previously demonstrated that bacterial DNA induces neutrophil activation through a CpG- and TLR9-independent but MyD88-dependent-pathway. In this study we determined that GM-CSF enhances the activation of neutrophils by bacterial DNA. Granulocyte-macrophage colony-stimulating factor increased IL-8 and IL-1beta secretion, and CD11b-upregulation induced by single-stranded bacterial DNA. It also enhanced neutrophil IL-8 production induced by double-stranded bacterial DNA, methylated single-stranded DNA, plasmid DNA, and phosphorothioated-CpG and non-CpG-oligodeoxynucleotides. Together these observations indicated that GM-CSF enhances neutrophil responses triggered by bacterial DNA in a CpG-independent fashion. We also found that GM-CSF enhanced the activation of the MAPKs p38 and ERK1/2 induced by bacterial DNA. Moreover, the pharmacological inhibition of these pathways significantly diminished GM-CSF ability to increase neutrophil activation by bacterial DNA. Finally, we observed that GM-CSF was unable to increase the activation of MyD88(-/-) neutrophils by bacterial DNA. Our findings suggest that GM-CSF modulates the CpG-independent, MyD88-dependent neutrophil response to bacterial DNA, by increasing the activation of the MAPKs p38 and ERK1/2.


Toxicon | 2015

Prevention of renal damage caused by Shiga toxin type 2: Action of Miglustat on human endothelial and epithelial cells

Magalí Girard; Flavia Sacerdoti; Fulton P. Rivera; Horacio A. Repetto; Cristina Ibarra; María M. Amaral

Typical hemolytic uremic syndrome (HUS) is responsible for acute and chronic renal failure in children younger than 5 years old in Argentina. Renal damages have been associated with Shiga toxin type 1 and/or 2 (Stx1, Stx2) produced by Escherichia coli O157:H7, although strains expressing Stx2 are highly prevalent in Argentina. Human glomerular endothelial cells (HGEC) and proximal tubule epithelial cells are very Stx-sensitive since they express high levels of Stx receptor (Gb3). Nowadays, there is no available therapy to protect patients from acute toxin-mediated cellular injury. New strategies have been developed based on the Gb3 biosynthesis inhibition through blocking the enzyme glucosylceramide (GL1) synthase. We assayed the action of a GL1 inhibitor (Miglustat: MG), on the prevention of the renal damage induced by Stx2. HGEC primary cultures and HK-2 cell line were pre-treated with MG and then incubated with Stx2. HK- 2 and HGEC express Gb3 and MG was able to decrease the levels of this receptor. As a consequence, both types of cells were protected from Stx2 cytotoxicity and morphology damage. MG was able to avoid Stx2 effects in human renal cells and could be a feasible strategy to protect kidney tissues from the cytotoxic effects of Stx2 in vivo.


PLOS ONE | 2016

Comparative Characterization of Shiga Toxin Type 2 and Subtilase Cytotoxin Effects on Human Renal Epithelial and Endothelial Cells Grown in Monolayer and Bilayer Conditions

Romina Álvarez; Flavia Sacerdoti; Carolina Jancic; Adrienne W. Paton; James C. Paton; Cristina Ibarra; María M. Amaral

Postdiarrheal hemolytic uremic syndrome (HUS) affects children under 5 years old and is responsible for the development of acute and chronic renal failure, particularly in Argentina. This pathology is a complication of Shiga toxin (Stx)-producing Escherichia coli infection and renal damage is attributed to Stx types 1 and 2 (Stx1, Stx2) produced by Escherichia coli O157:H7 and many other STEC serotypes. It has been reported the production of Subtilase cytotoxin (SubAB) by non-O157 STEC isolated from cases of childhood diarrhea. Therefore, it is proposed that SubAB may contribute to HUS pathogenesis. The human kidney is the most affected organ because very Stx-sensitive cells express high amounts of biologically active receptor. In this study, we investigated the effects of Stx2 and SubAB on primary cultures of human glomerular endothelial cells (HGEC) and on a human tubular epithelial cell line (HK-2) in monoculture and coculture conditions. We have established the coculture as a human renal proximal tubule model to study water absorption and cytotoxicity in the presence of Stx2 and SubAB. We obtained and characterized cocultures of HGEC and HK-2. Under basal conditions, HGEC monolayers exhibited the lowest electrical resistance (TEER) and the highest water permeability, while the HGEC/HK-2 bilayers showed the highest TEER and the lowest water permeability. In addition, at times as short as 20–30 minutes, Stx2 and SubAB caused the inhibition of water absorption across HK-2 and HGEC monolayers and this effect was not related to a decrease in cell viability. However, toxins did not have inhibitory effects on water movement across HGEC/HK-2 bilayers. After 72 h, Stx2 inhibited the cell viability of HGEC and HK-2 monolayers, but these effects were attenuated in HGEC/HK-2 bilayers. On the other hand, SubAB cytotoxicity shows a tendency to be attenuated by the bilayers. Our data provide evidence about the different effects of these toxins on the bilayers respect to the monolayers. This in vitro model of communication between human renal microvascular endothelial cells and human proximal tubular epithelial cells is a representative model of the human proximal tubule to study the effects of Stx2 and SubAB related to the development of HUS.


Placenta | 2015

Involvement of hypoxia and inflammation in early pregnancy loss mediated by Shiga toxin type 2

Flavia Sacerdoti; María M. Amaral; Julieta Aisemberg; Cora Cymeryng; A.M. Franchi; Cristina Ibarra

INTRODUCTION Symptomatic or asymptomatic Shiga toxin producing Escherichia coli (STEC) infections during early pregnancy may cause maternal or fetal damage mediated by Shiga toxin type 2 (Stx2). The aim of this study is to elucidate the mechanisms responsible for early pregnancy loss in rats treated with Stx2. METHODS Sprague Dawley pregnant rats were intraperitoneally injected at day 8 of gestation with a sublethal dose (0.5 ng of Stx2/g of total body weight, 250 μl) of purified Stx2. Control rats were injected with the same volume of PBS. The expression of globotriaosylceramide (Gb3) glycosphingolipid receptor for Stx2 was evaluated by thin-layer chromatography (TLC). Regions of hypoxia in decidual tissue were determined by pimonidazole immunohistochemistry and vascular endothelial growth factor (VEGF) expression by Western blot and immunohistochemistry. Tumor necrosis factor-alpha (TNF-α) levels in serum and decidual tissue were evaluated by ELISA. Serum progesterone levels were determined by RIA. RESULTS Decidual tissue from both, control and Stx2-treated rats showed similar expression of Gb3 receptor. Intrauterine growth restriction was observed in Stx2-treated rats, associated with hypoxia and an increase of decidual TNF-α levels. Decrease of serum progesterone levels and decidual VEGF expression were also demonstrated. DISCUSSION Our findings indicate that Stx2 reaches the uteroplacental unit, binds Gb3 and triggers damage in decidual tissue. Poor oxygen supply accompanied with damage in the uteroplacental unit and inflammation could be responsible for the early pregnancy loss. Decrease in the pregnancy protective factors, serum progesterone and local VEGF, may contribute to the pregnancy loss.


Vaccine | 2016

Immunization with BLS-Stx2B chimera totally protects dams from early pregnancy loss induced by Shiga toxin type 2 (Stx2) and confers anti-Stx2 immunity to the offspring.

Flavia Sacerdoti; María Pilar Mejías; Andrea C. Bruballa; Romina Álvarez; María M. Amaral; Marina S. Palermo; Cristina Ibarra

Shiga toxin producing Escherichia coli (STEC) are bacterial pathogens involved in food-borne diseases. Shiga toxin (Stx) is the main virulence factor of STEC and is responsible for systemic complications including Hemolytic Uremic Syndrome (HUS). It has been previously demonstrated that Shiga toxin type 2 (Stx2) induces pregnancy loss in rats in early stage of pregnancy. The main purpose of this study was to determine if an active immunization prevents Stx2 mediated pregnancy loss and confers passive protective immunity to the offspring. For that purpose Sprague Dawley female rats were immunized with the chimera based on the enzyme lumazine synthase from Brucella spp. (BLS) and the B subunit of Shiga toxin 2 (Stx2B) named BLS-Stx2B. After immunization females were mated with males. At day 8 of gestation, dams were challenged intraperitoneally with a sublethal and abortifacient dose of Stx2. The immunization induced high anti-Stx2B-specific antibody titers in sera and most important, prevented pregnancy loss. Pups born and breastfeed by immunized dams had high anti-Stx2B-specific antibody titers in sera. Cross-fostering experiments indicated that passive protective immunity against Stx2 was transmitted through lactation. These results indicate that immunization of adult female rats with BLS-Stx2B prevents Stx2-induced pregnancy loss and confers anti Stx2 protective immunity to the offspring.


BioMed Research International | 2014

Effects of Shiga Toxin Type 2 on Maternal and Fetal Status in Rats in the Early Stage of Pregnancy

Flavia Sacerdoti; María M. Amaral; Elsa Zotta; A.M. Franchi; Cristina Ibarra

Shiga toxin type 2 (Stx2), a toxin secreted by Shiga toxin-producing Escherichia coli (STEC), could be one of the causes of maternal and fetal morbimortality not yet investigated. In this study, we examined the effects of Stx2 in rats in the early stage of pregnancy. Sprague-Dawley pregnant rats were intraperitoneally (i.p.) injected with sublethal doses of Stx2, 0.25 and 0.5 ng Stx2/g of body weight (bwt), at day 8 of gestation (early postimplantation period of gestation). Maternal weight loss and food and water intake were analyzed after Stx2 injection. Another group of rats were euthanized and uteri were collected at different times to evaluate fetal status. Immunolocalization of Stx2 in uterus and maternal kidneys was analyzed by immunohistochemistry. The presence of Stx2 receptor (globotriaosylceramide, Gb3) in the uteroplacental unit was observed by thin layer chromatography (TLC). Sublethal doses of Stx2 in rats caused maternal weight loss and pregnancy loss. Stx2 and Gb3 receptor were localized in decidual tissues. Stx2 was also immunolocalized in renal tissues. Our results demonstrate that Stx2 leads to pregnancy loss and maternal morbidity in rats in the early stage of pregnancy. This study highlights the possibility of human pregnancy loss and maternal morbidity mediated by Stx2.


Journal of Asthma and Allergy | 2011

Thioperamide induces CD4+ CD25+ Foxp3+ regulatory T lymphocytes in the lung mucosa of allergic mice through its action on dendritic cells

María M. Amaral; Carolina Alvarez; Cecilia Langellotti; Carolina Jancic; Gabriela Salamone; Jorge Geffner; Mónica Vermeulen

Background: Histamine is an important mediator in the development of allergic reactions. The biological effects of histamine are mediated through four histaminergic receptors. In recent years, an important role has been assigned to the proinflammatory functions of histamine regarding the H4 receptor. Previously, we have demonstrated that injection of immature dendritic cells treated with histamine into allergic mice promotes an increase in CD8+ Tc2 lymphocytes, which are involved in the worsening of allergy symptoms during the chronic phase of the disease. The aim of this study was to evaluate the role of the H3/H4 receptor antagonist, thioperamide, in allergy. Methods: Ovalbumin-allergized mice and nonallergized mice were injected with phosphate-buffered saline, dendritic cells, or thioperamide-treated dendritic cells. After treatment, the lungs of the mice were obtained and analyzed for changes in the populations of dendritic cells and T lymphocytes, as well as the expression of H and H4 receptors in mononuclear lung cells. Results: We found an increase in regulatory T cells in the lungs of allergic mice intratracheally injected with dendritic cells which had their H3/H4 receptors blocked with thioperamide. We also found an increase in the production of interleukin-10 by dendritic cells of the lung. Finally, we observed a decrease in serum levels of specific anti-IgE and a reduction of eosinophils in bronchoalveolar lavage from allergic mice. Conclusion: Thioperamide induces a significant improvement in symptoms of allergic reaction perhaps via induction of regulatory T lymphocytes. These findings may become relevant in the understanding of type 1 hypersensivity reactions.

Collaboration


Dive into the María M. Amaral's collaboration.

Top Co-Authors

Avatar

Cristina Ibarra

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Flavia Sacerdoti

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Marina S. Palermo

Academia Nacional de Medicina

View shared research outputs
Top Co-Authors

Avatar

Romina Álvarez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

A.M. Franchi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Analía S. Trevani

Academia Nacional de Medicina

View shared research outputs
Top Co-Authors

Avatar

Andrea C. Bruballa

Academia Nacional de Medicina

View shared research outputs
Researchain Logo
Decentralizing Knowledge