María M. Caffarel
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María M. Caffarel.
Cancer Research | 2006
María M. Caffarel; David Sarrió; José Palacios; Manuel Guzmán; Cristina Sánchez
It has been proposed that cannabinoids are involved in the control of cell fate. Thus, these compounds can modulate proliferation, differentiation, and survival in different manners depending on the cell type and its physiopathologic context. However, little is known about the effect of cannabinoids on the cell cycle, the main process controlling cell fate. Here, we show that Delta(9)-tetrahydrocannabinol (THC), through activation of CB(2) cannabinoid receptors, reduces human breast cancer cell proliferation by blocking the progression of the cell cycle and by inducing apoptosis. In particular, THC arrests cells in G(2)-M via down-regulation of Cdc2, as suggested by the decreased sensitivity to THC acquired by Cdc2-overexpressing cells. Of interest, the proliferation pattern of normal human mammary epithelial cells was much less affected by THC. We also analyzed by real-time quantitative PCR the expression of CB(1) and CB(2) cannabinoid receptors in a series of human breast tumor and nontumor samples. We found a correlation between CB(2) expression and histologic grade of the tumors. There was also an association between CB(2) expression and other markers of prognostic and predictive value, such as estrogen receptor, progesterone receptor, and ERBB2/HER-2 oncogene. Importantly, no significant CB(2) expression was detected in nontumor breast tissue. Taken together, these data might set the bases for a cannabinoid therapy for the management of breast cancer.
Oncogene | 2011
Clara Andradas; María M. Caffarel; Eduardo Pérez-Gómez; María Salazar; Mar Lorente; Guillermo Velasco; Manuel Guzmán; Cristina Sánchez
GPR55 is an orphan G protein-coupled receptor that may be engaged by some lipid ligands such as lysophosphatidylinositol and cannabinoid-type compounds. Very little is known about its expression pattern and physio-pathological relevance, and its pharmacology and signaling are still rather controversial. Here we analyzed the expression and function of GPR55 in cancer cells. Our data show that GPR55 expression in human tumors from different origins correlates with their aggressiveness. Moreover, GPR55 promotes cancer cell proliferation, both in cell cultures and in xenografted mice, through the overactivation of the extracellular signal-regulated kinase cascade. These findings reveal the importance of GPR55 in human cancer, and suggest that it could constitute a new biomarker and therapeutic target in oncology.
Molecular Cancer | 2010
María M. Caffarel; Clara Andradas; Emilia Mira; Eduardo Pérez-Gómez; Camilla Cerutti; Gema Moreno-Bueno; Juana M. Flores; Isabel García-Real; José Palacios; Santos Mañes; Manuel Guzmán; Cristina Sánchez
BackgroundErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors.ResultsOur results show that both Δ9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2.ConclusionsTaken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.
International Journal of Molecular Sciences | 2016
Erika Larrea; Carla Sole; Lorea Manterola; Ibai Goicoechea; María Armesto; María Arestin; María M. Caffarel; Angela M. Araujo; María Araiz; Marta Fernandez-Mercado; Charles H. Lawrie
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
PLOS ONE | 2011
Jonathan James Campbell; Natalia Davidenko; María M. Caffarel; Ruth E. Cameron; Christine J. Watson
Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.
Cancer Treatment Reviews | 2012
María M. Caffarel; Clara Andradas; Eduardo Pérez-Gómez; Manuel Guzmán; Cristina Sánchez
Breast cancer is a very common disease that affects approximately 1 in 10 women at some point in their lives. Importantly, breast cancer cannot be considered a single disease as it is characterized by distinct pathological and molecular subtypes that are treated with different therapies and have diverse clinical outcomes. Although some highly successful treatments have been developed, certain breast tumors are resistant to conventional therapies and a considerable number of them relapse. Therefore, new strategies are urgently needed, and the challenge for the future will most likely be the development of individualized therapies that specifically target each patients tumor. Experimental evidence accumulated during the last decade supports that cannabinoids, the active components of Cannabis sativa and their derivatives, possess anticancer activity. Thus, these compounds exert anti-proliferative, pro-apoptotic, anti-migratory and anti-invasive actions in a wide spectrum of cancer cells in culture. Moreover, tumor growth, angiogenesis and metastasis are hampered by cannabinoids in xenograft-based and genetically-engineered mouse models of cancer. This review summarizes our current knowledge on the anti-tumor potential of cannabinoids in breast cancer, which suggests that cannabinoid-based medicines may be useful for the treatment of most breast tumor subtypes.
Journal of Biological Chemistry | 2014
Estefanía Moreno; Clara Andradas; Mireia Medrano; María M. Caffarel; Eduardo Pérez-Gómez; Sandra Blasco-Benito; María Gómez-Cañas; M. Ruth Pazos; Andrew J. Irving; Carme Lluis; Enric I. Canela; Javier Fernández-Ruiz; Manuel Guzmán; Peter J. McCormick; Cristina Sánchez
Background: Cannabinoid receptor CB2 (CB2R) and GPR55 are overexpressed in cancer cells and control cell fate. Results: In cancer cells, CB2R and GPR55 form heteromers that impact the signaling of each protomer. Conclusion: CB2R-GPR55 heteromers drive biphasic signaling responses as opposed to the individual receptors via cross-antagonism. Significance: These heteromers may explain some of the biphasic effects of cannabinoids and, therefore, constitute potential new targets in oncology. The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology.
The Journal of Pathology | 2014
María M. Caffarel; Nicholas Coleman
Cervical carcinoma is the second most common cause of cancer deaths in women worldwide. Treatments have not changed for decades and survival rates for advanced disease remain low. An exciting new molecular target for the treatment of cervical squamous cell carcinoma (SCC), and possibly for SCCs at other anatomical sites, is the oncostatin M receptor (OSMR). This cell surface cytokine receptor is commonly copy number gained and overexpressed in advanced cervical SCC, changes that are associated with significantly worse clinical outcomes. OSMR overexpression in cervical SCC cells results in enhanced responsiveness to the major ligand oncostatin M (OSM), which induces several pro‐malignant effects, including a pro‐angiogenic phenotype and increased cell migration and invasiveness. OSMR is a strong candidate for antibody‐mediated inhibition, a strategy that has had a major impact on haematological malignancies and various solid tumours such as HER2‐positive breast cancers.
Journal of the National Cancer Institute | 2015
Eduardo Pérez-Gómez; Clara Andradas; Sandra Blasco-Benito; María M. Caffarel; Elena García-Taboada; María Villa-Morales; Estefanía Moreno; Sigrid Hamann; Ester Martín-Villar; Juana M. Flores; Antonia Wenners; Ibrahim Alkatout; Wolfram Klapper; Christoph Röcken; Peter Bronsert; Elmar Stickeler; Annette Staebler; Maret Bauer; Norbert Arnold; Joaquim Soriano; Manuel Pérez-Martínez; Diego Megías; Gema Moreno-Bueno; Silvia Ortega-Gutiérrez; Marta Artola; Henar Vázquez-Villa; Miguel Quintanilla; José Fernández-Piqueras; Enric I. Canela; Peter J. McCormick
BACKGROUNDnPharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown.nnnMETHODSnWe analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen, and Freiburg between 1997 and 2010 and CB2 mRNA expression in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2) rat ortholog (neu) and lacks CB2 and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by colocalization, coimmunoprecipitation, and proximity ligation assays. Statistical tests were two-sided.nnnRESULTSnWe show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis (decreased overall survival, hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.09 to 0.71, P = .009) and higher probability to suffer local recurrence (HR = 0.09, 95% CI = 0.049 to 0.54, P = .003) and to develop distant metastases (HR = 0.33, 95% CI = 0.13 to 0.75, P = .009). We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade and that an increased CB2 expression activates the HER2 pro-oncogenic signaling at the level of the tyrosine kinase c-SRC. Finally, we show HER2 and CB2 form heteromers in cancer cells.nnnCONCLUSIONSnOur findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with prognostic value in these tumors.
Cell Death & Differentiation | 2012
María M. Caffarel; Rosa Zaragozá; Sara Pensa; Juan Li; Anthony R. Green; Christine J. Watson
Signalling through the janus kinase (JAK)/signal transducer and activator of transcription (Stat) pathway is required at different stages of mammary gland development, and this pathway is frequently hyper-activated in cancer, including tumours of the breast. Stats 3, 5 and 6 have important roles in the differentiation and survival of mammary alveolar cells, but somewhat paradoxically, both Stat3 and 5 can have oncogenic activity in the mammary gland. Constitutive activation of JAK2 could be anticipated to result in hyper-activation of Stats 1, 3, 5 and 6 with concomitant cell transformation, although the outcome is difficult to envisage, particularly since Stats 3 and 5 play opposing roles in normal mammary gland development. Here, we show that expression of a constitutively active JAK2 mutant, JAK2 V617F, leads to hyper-activation of Stat5 in mammary epithelial cells (MECs), and transgenic mice expressing JAK2 V617F specifically in the mammary gland exhibit accelerated alveologenesis during pregnancy and delayed post-lactational regression. Overexpressing JAK2 V617F in MECs in vitro results in elevated proliferation and resistance to cell death. Furthermore, constitutively active JAK2 enhances anchorage-independent cell growth in the presence of a co-operating oncogene and accelerates tumourigenesis in a xenograft model. Taken together, our results provide insights into signalling downstream of constitutively active JAK2 and could be important for understanding the molecular mechanisms of breast tumourigenesis.