Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria M. Szwarc is active.

Publication


Featured researches published by Maria M. Szwarc.


Development | 2013

Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells

Heather J. Lee; David Gallego-Ortega; Anita Ledger; Daniel Schramek; Purna A. Joshi; Maria M. Szwarc; Christina Cho; John P. Lydon; Rama Khokha; Josef M. Penninger; Christopher J. Ormandy

Progesterone-RankL paracrine signaling has been proposed as a driver of stem cell expansion in the mammary gland, and Elf5 is essential for the differentiation of mammary epithelial progenitor cells. We demonstrate that Elf5 expression is induced by progesterone and that Elf5 and progesterone cooperate to promote alveolar development. The progesterone receptor and Elf5 are expressed in a mutually exclusive pattern, and we identify RankL as the paracrine mediator of the effects of progesterone on Elf5 expression in CD61+ progenitor cells and their consequent differentiation. Blockade of RankL action prevented progesterone-induced side branching and the expansion of Elf5+ mature luminal cells. These findings describe a mechanism by which steroid hormones can produce the expansion of steroid hormone receptor-negative mammary epithelial cells.


PLOS Genetics | 2013

Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization.

Ramakrishna Kommagani; Maria M. Szwarc; Ertug Kovanci; William E. Gibbons; Nagireddy Putluri; Suman Maity; Chad J. Creighton; Arun Sreekumar; Francesco J. DeMayo; John P. Lydon; Bert W. O'Malley

Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.


Cancer Research | 2010

Discovery and Mechanistic Characterization of a Novel Selective Nuclear Androgen Receptor Exporter for the Treatment of Prostate Cancer

Ramesh Narayanan; Muralimohan Yepuru; Adam T. Szafran; Maria M. Szwarc; Casey E. Bohl; Natalie L. Young; Duane D. Miller; Michael A. Mancini; James T. Dalton

Despite the success of medical strategies to reduce androgen levels in the treatment of prostate cancer, this disease invariably relapses to a castrate-resistant state that is generally fatal. Although it had been thought that androgen-insensitive cancers no longer relied on the androgen receptor (AR) for growth and survival, it is now clear that this is not the case. Because relapses are known to occur by many mechanisms that keep the AR functionally active, strategies to block AR accumulation in the nucleus may be therapeutically useful. Here, we report the discovery of a selective nuclear androgen receptor exporter (SNARE) that functions to exclude AR from the nucleus. SNARE-1 binds wild-type and mutant ARs and efficiently inhibits their transactivation activity and ability to induce PSA gene expression. SNARE-1 inhibits the androgen-sensitive growth of LNCaP cells and tumor xenografts. Quantitative subcellular localization studies suggest that SNARE-1 inhibits nuclear translocation of AR, but also facilitates export of nuclear AR that has been translocated by an agonist. Mechanistic studies indicate that SNARE-1 rapidly phosphorylates p38 mitogen-activated protein kinase (MAPK) and Ser(650) of the AR. Additionally, SNARE-1 was found to promote ubiquitination of AR in LNCaP cells. Lastly, SNARE-1 functions as a tissue-selective AR inhibitor, as it fails to phosphorylate p38 MAPK in U2OS bone cells that are stably transfected with AR. In summary, SNARE-1 inhibits AR function by a mechanism that is distinct from clinically available antiandrogens, such that it might inform novel methods to block AR function in androgen-independent prostate cancer.


PLOS ONE | 2009

Androgen Receptor Mutations Associated with Androgen Insensitivity Syndrome: A High Content Analysis Approach Leading to Personalized Medicine

Adam T. Szafran; Sean M. Hartig; Huiying Sun; Ivan P. Uray; Maria M. Szwarc; Yuqing Shen; Sanjay N. Mediwala; Jennifer Bell; Michael J. McPhaul; Michael A. Mancini; Marco Marcelli

Androgen insensitivity syndrome (AIS) is a rare disease associated with inactivating mutations of AR that disrupt male sexual differentiation, and cause a spectrum of phenotypic abnormalities having as a common denominator loss of reproductive viability. No established treatment exists for these conditions, however there are sporadic reports of patients (or recapitulated mutations in cell lines) that respond to administration of supraphysiologic doses (or pulses) of testosterone or synthetic ligands. Here, we utilize a novel high content analysis (HCA) approach to study AR function at the single cell level in genital skin fibroblasts (GSF). We discuss in detail findings in GSF from three historical patients with AIS, which include identification of novel mechanisms of AR malfunction, and the potential ability to utilize HCA for personalized treatment of patients affected by this condition.


PLOS ONE | 2014

Perturbing the cellular levels of steroid receptor coactivator-2 impairs murine endometrial function.

Maria M. Szwarc; Ramakrishna Kommagani; Jae Wook Jeong; San-Pin Wu; Sophia Y. Tsai; Ming-Jer Tsai; Bert W. O’Malley; Francesco J. DeMayo; John P. Lydon

As pleiotropic coregulators, members of the p160/steroid receptor coactivator (SRC) family control a broad spectrum of transcriptional responses that underpin a diverse array of physiological and pathophysiological processes. Because of their potent coregulator properties, strict controls on SRC expression levels are required to maintain normal tissue functionality. Accordingly, an unwarranted increase in the cellular levels of SRC members has been causally linked to the initiation and/or progression of a number of clinical disorders. Although knockout mouse models have underscored the critical non-redundant roles for each SRC member in vivo, there are surprisingly few mouse models that have been engineered to overexpress SRCs. This deficiency is significant since SRC involvement in many of these disorders is based on unscheduled increases in the levels (rather than the absence) of SRC expression. To address this deficiency, we used recent mouse technology that allows for the targeted expression of human SRC-2 in cells which express the progesterone receptor. Through cre-loxP recombination driven by the endogenous progesterone receptor promoter, a marked elevation in expression levels of human SRC-2 was achieved in endometrial cells that are positive for the progesterone receptor. As a result of this increase in coregulator expression, female mice are severely subfertile due to a dysfunctional uterus, which exhibits a hypersensitivity to estrogen exposure. Our findings strongly support the proposal from clinical observations that increased levels of SRC-2 are causal for a number of endometrial disorders which compromise fertility. Future studies will use this mouse model to decipher the molecular mechanisms that underpin the endometrial defect. We believe such mechanistic insight may provide new molecular descriptors for diagnosis, prognosis, and/or therapy in the clinical management of female infertility.


Biology of Reproduction | 2014

The p160/Steroid Receptor Coactivator Family: Potent Arbiters of Uterine Physiology and Dysfunction

Maria M. Szwarc; Ramakrishna Kommagani; Bruce A. Lessey; John P. Lydon

ABSTRACT The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3; otherwise known as NCOA1, NCOA2, and NCOA3, respectively), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor and non-nuclear receptor signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From “dovetailing” clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and to colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells, SRC-2 was shown to act as a molecular “pacemaker” of the glycolytic flux. This finding is significant because acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for endometrial stromal cells to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Although studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies, particularly in the mouse, to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.


PLOS Genetics | 2016

The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

Ramakrishna Kommagani; Maria M. Szwarc; Yasmin M. Vasquez; M. Peavey; Erik C. Mazur; William E. Gibbons; Rainer B. Lanz; Francesco J. DeMayo; John P. Lydon

Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights into the molecular mechanisms by which progesterone drives hESC decidualization, our findings provide a new conceptual framework that could lead to new avenues for diagnosis and/or treatment of adverse reproductive outcomes associated with a dysfunctional uterus.


Biology of Reproduction | 2014

A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells.

Ramakrishna Kommagani; Maria M. Szwarc; Ertug Kovanci; Chad J. Creighton; Bert W. O'Malley; Francesco J. DeMayo; John P. Lydon

ABSTRACT Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)—a member of the p160/SRC family of coregulators—in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2flox/flox (SRC-2f/f [control]) and PRcre/+/SRC-2flox/flox (SRC-2d/d [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.


Molecular Human Reproduction | 2017

Growth regulation by estrogen in breast cancer 1 (GREB1) is a novel progesterone-responsive gene required for human endometrial stromal decidualization

Alison J. Camden; Maria M. Szwarc; Sangappa B. Chadchan; Francesco J. DeMayo; Bert W. O'Malley; John P. Lydon; Ramakrishna Kommagani

STUDY QUESTION Is Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) required for progesterone-driven endometrial stromal cell decidualization? SUMMARY ANSWER GREB1 is a novel progesterone-responsive gene required for progesterone-driven human endometrial stromal cell (HESC) decidualization. WHAT IS KNOWN ALREADY Successful establishment of pregnancy requires HESCs to transform from fibroblastic to epithelioid cells in a process called decidualization. This process depends on the hormone progesterone, but the molecular mechanisms by which it occurs have not been determined. STUDY DESIGN, SIZE, DURATION Primary and transformed HESCs in which GREB1 expression was knocked down were decidualized in culture for up to 6 days. Wild-type and progesterone receptor (PR) knockout mice were treated with progesterone, and their uteri were assessed for levels of GREB1 expression. PARTICIPANTS/MATERIALS, SETTING, METHODS Analysis of previous data included data mining of expression profile data sets and in silico transcription factor-binding analysis. Endometrial biopsies obtained from healthy women of reproductive age during the proliferative phase (Days 8-12) of their menstrual cycle were used for isolating HESCs. Experiments were carried out with early passage (no more than four passages) HESCs isolated from at least three subjects. Transcript levels of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1) were detected by quantitative RT-PCR as readouts for HESC decidualization. Cells were also imaged by phase-contrast microscopy. To assess the requirement for GREB1, PR and SRC-2, cells were transfected with specifically targeted small interfering RNAs. Results are shown as mean and SE from three replicates of one representative patient-derived primary endometrial cell line. Experiments were also conducted with transformed HESCs. MAIN RESULTS AND THE ROLE OF CHANCE Progesterone treatment of mice and transformed HESCs led to an ~5-fold (5.6 ± 0.81, P < 0.05, and 5.2 ± 0.26, P < 0.01, respectively) increase in GREB1 transcript levels. This increase was significantly reduced in the uteri of PR knock-out mice (P < 0.01), in HESCs treated with the PR antagonist RU486 (P < 0.01), or in HESCs in which PR expression was knocked down (P < 0.05). When GREB1 expression was knocked down, progesterone-driven decidualization markers in both immortalized and primary HESCs was significantly reduced (P < 0.05 and P < 0.01). Finally, GREB1 knock down signficantly reduced expression of the PR target genes WNT4 and FOXOA1 (P < 0.05 and P < 0.01, respectively). LARGE SCALE DATA This study used the Nuclear Receptor Signaling Atlas. LIMITATIONS, REASONS FOR CAUTION Although in vitro cell culture studies indicate that GREB1 is required for endoemtrial decidualization, the in vivo role of GREB1 in endometrial function and dysfunction should be assessed by using knock-out mouse models. WIDER IMPLICATIONS OF THE FINDINGS Identification and functional analysis of GREB1 as a key molecular mediator of decidualization may lead to improved diagnosis and clinical management of women with peri-implantation loss due to inadequate endometrial decidualization. STUDY FUNDING AND COMPETING INTEREST(S) This research was funded in part by: a National Institutes of Health (NIH)/ National Institute of Child Health and Human Development (NICHD) grant (R00 HD080742) and Washington University School of Medicine start-up funds to R.K., an NIH/NICHD grant (RO1 HD-07857) to B.W.O.M., and a NIH/NICHD grant (R01 HD-042311) to J.P.L. The authors declare no conflicts of interests.


PLOS ONE | 2015

Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors.

Maria M. Szwarc; Ramakrishna Kommagani; Allison P. Jacob; William C. Dougall; Michael Ittmann; John P. Lydon

Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.

Collaboration


Dive into the Maria M. Szwarc's collaboration.

Top Co-Authors

Avatar

John P. Lydon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert W. O'Malley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

M. Peavey

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Hai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rainer B. Lanz

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge