María Macarena Gómez Mármol
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Macarena Gómez Mármol.
SIAM Journal on Numerical Analysis | 2017
Tomás Chacón Rebollo; Enrique Delgado Ávila; María Macarena Gómez Mármol; Francesco Ballarin; Gianluigi Rozza
In this work we present a reduced basis Smagorinsky turbulence model for steady flows. We approximate the nonlinear eddy diffusion term using the empirical interpolation method (cf. [M. A. Grepl et al., ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 575--605; Barrault et al., C. R. Acad. Sci. Paris Ser. I Math., 339 (2004), pp. 667--672]) and the velocity-pressure unknowns by an independent reduced-basis procedure. This model is based upon an a posteriori error estimation for a Smagorinsky turbulence model. The theoretical development of the a posteriori error estimation is based on [S. Deparis, SIAM J. Sci. Comput., 46 (2008), pp. 2039--2067] and [A. Manzoni, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 1199--1226], according to the Brezzi--Rappaz--Raviart stability theory, and adapted for the nonlinear eddy diffusion term. We present some numerical tests, programmed in FreeFem++ (cf. [F. Hecht, J. Numer. Math., 20 (2012), pp. 251--265]), in which we show a speedup on the computation by factor larger...
Applied Mathematics Letters | 2013
Tomás Chacón Rebollo; María Macarena Gómez Mármol; Isabel Sánchez Muñoz
Abstract We introduce a low-order stabilized discretization of the primitive equations of the ocean with highly reduced computational complexity. We prove stability through a specific inf–sup condition, and weak convergence to a weak solution. We also perform some numerical tests for relevant flows.
SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada | 2012
Christine Bernardi; Tomás Chacón Rebollo; María Macarena Gómez Mármol
We propose a finite element discretization of the Navier-Stokes equations that relies on the variational multi-scale approach together with the addition of a Smagorinsky type viscosity, in order to take into account possible subgrid turbulence. We recall that the discrete problem admits a solution and prove a priori error estimates. Next we perform the a posteriori analysis of the discretization. Some numerical experiments justify the interest of this approach.
Mathematical Modelling and Numerical Analysis | 1999
María Macarena Gómez Mármol; Francisco Ortegón Gallego
Mathematical Modelling and Numerical Analysis | 2010
Anne-Claire Bennis; Tomás Chacón Rebollo; María Macarena Gómez Mármol; Roger Lewandowski
Mathematical Modelling and Numerical Analysis | 2015
Tomás Chacón Rebollo; Vivette Girault; María Macarena Gómez Mármol; Isabel Sánchez Muñoz
arXiv: Mathematical Physics | 2007
Anne-Claire Bennis; María Macarena Gómez Mármol; Roger Lewandowski; Tomás Chacón Rebollo; Françoise Brossier
VIII Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques :Jaca, Spain, September 15-17, 2003, 2003, ISBN 84-7733-720-9, págs. 91-100 | 2003
Juan Casado Díaz; Tomás Chacón Rebollo; María Macarena Gómez Mármol; Vivette Girault; François Murat
Archive | 2016
Tomás Chacón Rebollo; Enrique Delgado Ávila; María Macarena Gómez Mármol
Archive | 2007
Tomás Chacón Rebollo; María Macarena Gómez Mármol; Isabel Sánchez Muñoz