Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Medalla is active.

Publication


Featured researches published by Maria Medalla.


Nature Neuroscience | 2015

Depletion of microglia and inhibition of exosome synthesis halt tau propagation

Hirohide Asai; Seiko Ikezu; Satoshi P. Tsunoda; Maria Medalla; Jennifer I. Luebke; Tarik F. Haydar; Benjamin Wolozin; Oleg Butovsky; Sebastian Kügler; Tsuneya Ikezu

Accumulation of pathological tau protein is a major hallmark of Alzheimers disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target.


Neuron | 2009

Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control

Maria Medalla; Helen Barbas

The primate dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) focus attention on relevant signals and suppress noise in cognitive tasks. However, their synaptic interactions and unique roles in cognitive control are unknown. We report that two distinct pathways to DLPFC area 9, one from the neighboring area 46 and the other from the functionally distinct ACC, similarly innervate excitatory neurons associated with selecting relevant stimuli. However, ACC has more prevalent and larger synapses with inhibitory neurons and preferentially innervates calbindin inhibitory neurons, which reduce noise by inhibiting excitatory neurons. In contrast, area 46 mostly innervates calretinin inhibitory neurons, which disinhibit excitatory neurons. These synaptic specializations suggest that ACC has a greater impact in reducing noise in dorsolateral areas during challenging cognitive tasks involving conflict, error, or reversing decisions, mechanisms that are disrupted in schizophrenia. These observations highlight the unique roles of the DLPFC and ACC in cognitive control.


European Journal of Neuroscience | 2006

Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure

Maria Medalla; Helen Barbas

Lateral prefrontal and intraparietal cortices have strong connectional and functional associations but it is unclear how their common visuomotor, perceptual and working memory functions arise. The hierarchical scheme of cortical processing assumes that prefrontal cortex issues ‘feedback’ projections to parietal cortex. However, the architectonic heterogeneity of these cortices raises the question of whether distinct areas have laminar‐specific interconnections underlying their complex functional relationship. Using quantitative procedures, we showed that laminar‐specific connections between distinct prefrontal (areas 46 and 8) and lateral intraparietal (LIPv, LIPd and 7a) areas in Macaca mulatta, studied with neural tracers, varied systematically according to rules determined by the laminar architecture of the linked areas. We found that axons from areas 46 and rostral 8 terminated heavily in layers I–III of all intraparietal areas, as did caudal area 8 to area LIPv, suggesting ‘feedback’ communication. However, contrary to previous assumptions, axons from caudal area 8 terminated mostly in layers IV–V of LIPd and 7a, suggesting ‘feedforward’ communication. These laminar patterns of connections were highly correlated with consistent differences in neuronal density between linked areas. When neuronal density in a prefrontal origin was lower than in the intraparietal destination, most terminations were found in layer I with a concomitant decrease in layer IV. The opposite occurred when the prefrontal origin had a higher neuronal density than the target. These findings indicate that the neuronal density of linked areas can reliably predict their laminar connections and may form the basis of understanding the functional complexity of prefrontal–intraparietal interactions in cognition.


The Journal of Neuroscience | 2010

Anterior Cingulate Synapses in Prefrontal Areas 10 and 46 Suggest Differential Influence in Cognitive Control

Maria Medalla; Helen Barbas

Dorsolateral prefrontal areas 46 and 10 are involved in distinct aspects of cognition. Area 46 has a key role in working memory tasks, and frontopolar area 10 is recruited in complex multitask operations. Both areas are innervated by the anterior cingulate cortex (ACC), a region associated with emotions and memory but is also important for attentional control through unknown synaptic mechanisms. Here, we found that in rhesus monkeys (Macaca mulatta) most axon terminals labeled from tracers injected into ACC area 32 innervated spines of presumed excitatory neurons, but ∼20–30% formed mostly large synapses with dendritic shafts of presumed inhibitory neurons in the upper layers (I–IIIa) of dorsolateral areas 10, 46, and 9. Moreover, area 32 terminals targeted preferentially calbindin and, to a lesser extent, calretinin neurons, which are thought to be inhibitory neurons that modulate the gain of task-relevant activity during working memory tasks. Area 46 was distinguished as a recipient of more (by ∼40%) area 32 synapses on putative inhibitory neurons. Area 10 stood apart as recipient of significantly larger (by ∼40% in volume) area 32 terminals on spines of putative excitatory neurons. These synaptic specializations suggest that area 32 has complementary roles, potentially enhancing inhibition in area 46 and strengthening excitation in area 10, which may help direct attention to new tasks while temporarily holding in memory another task.


The Journal of Neuroscience | 2012

The Anterior Cingulate Cortex May Enhance Inhibition of Lateral Prefrontal Cortex Via m2 Cholinergic Receptors at Dual Synaptic Sites

Maria Medalla; Helen Barbas

The anterior cingulate cortex (ACC) and dorsolateral prefrontal cortices (DLPFC) share robust excitatory connections. However, during rapid eye movement (REM) sleep, when cortical activity is dominated by acetylcholine, the ACC is activated but DLPFC is suppressed. Using pathway tracing and electron microscopy in nonhuman primates (Macaca mulatta), we tested the hypothesis that the opposite states may reflect specific modulation by acetylcholine through strategic synaptic localization of muscarinic m2 receptors, which inhibit neurotransmitter release presynaptically, but are thought to be excitatory postsynaptically. In the ACC pathway to DLPFC (area 32 to area 9), m2 receptors predominated in ACC axon terminals and in more than half of the targeted dendrites of presumed inhibitory neurons, suggesting inhibitory cholinergic influence. In contrast, in a pathway linking the DLPFC area 46 to DLPFC area 9, postsynaptic m2 receptors predominated in targeted spines of presumed excitatory neurons, consistent with their mutual activation in working memory. These novel findings suggest that presynaptic and postsynaptic specificity of m2 cholinergic receptors may help explain the differential engagement of ACC and DLPFC areas in REM sleep for memory consolidation and synergism in awake states for cognitive control.


Frontiers in Neuroscience | 2014

Specialized prefrontal “auditory fields”: organization of primate prefrontal-temporal pathways

Maria Medalla; Helen Barbas

No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal “auditory field” as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.


The Journal of Neuroscience | 2015

Neural Precursor Lineages Specify Distinct Neocortical Pyramidal Neuron Types

William A. Tyler; Maria Medalla; Teresa Guillamon-Vivancos; Jennifer I. Luebke; Tarik F. Haydar

Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity.


Cerebral Cortex | 2015

Age-Related Changes to Layer 3 Pyramidal Cells in the Rhesus Monkey Visual Cortex

Jennifer I. Luebke; Maria Medalla; Joseph M. Amatrudo; Christina M. Weaver; Johanna L. Crimins; Brendan Hunt; Patrick R. Hof; Alan Peters

The effects of normal aging on morphologic and electrophysiologic properties of layer 3 pyramidal neurons in rhesus monkey primary visual cortex (V1) were assessed with whole-cell, patch-clamp recordings in in vitro slices. In another cohort of monkeys, the ultrastructure of synapses in the layers 2-3 neuropil of V1 was assessed using electron microscopy. Distal apical dendritic branching complexity was reduced in aged neurons, as was the total spine density, due to specific loss of mushroom spines from the apical tree and of thin spines from the basal tree. There was also an age-related decrease in the numerical density of symmetric and asymmetric synapses. In contrast to these structural changes, intrinsic membrane, action potential (AP), and excitatory and inhibitory synaptic current properties were the same in aged and young neurons. Computational modeling using morphologic reconstructions predicts that reduced dendritic complexity leads to lower attenuation of voltage outward from the soma (e.g., backpropagating APs) in aged neurons. Importantly, none of the variables that changed with age differed in neurons from cognitively impaired versus unimpaired aged monkeys. In summary, there are age-related alterations to the structural properties of V1 neurons, but these are not associated with significant electrophysiologic changes or with cognitive decline.


Cerebral Cortex | 2016

Area-Specific Features of Pyramidal Neurons—a Comparative Study in Mouse and Rhesus Monkey

Joshua P. Gilman; Maria Medalla; Jennifer I. Luebke

Abstract A principal challenge of systems neuroscience is to understand the unique characteristics of cortical neurons and circuits that enable area‐ and species‐specific sensory encoding, motor function, cognition, and behavior. To address this issue, we compared properties of layer 3 pyramidal neurons in 2 cortical areas that span a broad range of cortical function—primary sensory (V1), to cognitive (frontal)—in the mouse and the rhesus monkey. Hierarchical clustering and discriminant analyses of 15 physiological and 25 morphological variables revealed 2 fundamental principles. First, V1 and frontal neurons are remarkably similar with regard to nearly every property in the mouse, while the opposite is true in the monkey, with V1 and frontal neurons exhibiting significant differences in nearly every property assessed. Second, neurons within visual and frontal areas differ significantly between the mouse and the monkey. Neurons in mouse and monkey V1 are the same size, but differ in nearly every other way; mouse frontal cortical neurons are smaller than those in the monkey and also differ substantially with regard to most other properties. These findings have broad implications for understanding the differential contributions of heterogeneous neuronal types in construction of cortical microcircuitry in diverse brain areas and species.


Nature Neuroscience | 2018

Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo

Daniel J. Apicco; Peter E.A. Ash; Brandon Maziuk; Chelsey LeBlang; Maria Medalla; Ali Al Abdullatif; Antonio Ferragud; Emily Botelho; Heather I. Ballance; Uma Dhawan; Samantha Boudeau; Anna Lourdes Cruz; Daniel Kashy; Aria Wong; Lisa R. Goldberg; Neema Yazdani; Cheng Zhang; Choong Y. Ung; Yorghos Tripodis; Nicholas M. Kanaan; Tsuneya Ikezu; Pietro Cottone; John D. Leszyk; Hu Li; Jennifer I. Luebke; Camron D. Bryant; Benjamin Wolozin

Emerging studies suggest a role for tau in regulating the biology of RNA binding proteins (RBPs). We now show that reducing the RBP T-cell intracellular antigen 1 (TIA1) in vivo protects against neurodegeneration and prolongs survival in transgenic P301S Tau mice. Biochemical fractionation shows co-enrichment and co-localization of tau oligomers and RBPs in transgenic P301S Tau mice. Reducing TIA1 decreased the number and size of granules co-localizing with stress granule markers. Decreasing TIA1 also inhibited the accumulation of tau oligomers at the expense of increasing neurofibrillary tangles. Despite the increase in neurofibrillary tangles, TIA1 reduction increased neuronal survival and rescued behavioral deficits and lifespan. These data provide in vivo evidence that TIA1 plays a key role in mediating toxicity and further suggest that RBPs direct the pathway of tau aggregation and the resulting neurodegeneration. We propose a model in which dysfunction of the translational stress response leads to tau-mediated pathology.Apicco and colleagues show that reducing TIA1 inhibits tau-mediated neurodegeneration and improves survival in a mouse model of tauopathy. This rescue occurs with a transition in tau aggregation from oligomeric to fibrillar forms of tau. These findings suggest a key role for RNA binding proteins in the pathophysiology of tau.

Collaboration


Dive into the Maria Medalla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge