Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Mittelbrunn is active.

Publication


Featured researches published by María Mittelbrunn.


Nature Communications | 2011

Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

María Mittelbrunn; Cristina Gutiérrez-Vázquez; Carolina Villarroya-Beltri; Susana Gonzalez; Fátima Sánchez-Cabo; Manuel A. González; Antonio Bernad; Francisco Sánchez-Madrid

The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis.


Journal of extracellular vesicles | 2015

Biological properties of extracellular vesicles and their physiological functions.

María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.


Nature Communications | 2013

Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs

Carolina Villarroya-Beltri; Cristina Gutiérrez-Vázquez; Fátima Sánchez-Cabo; Daniel Pérez-Hernández; Jesús Vázquez; Noa B. Martín-Cófreces; Dannys Jorge Martínez-Herrera; Alberto Pascual-Montano; María Mittelbrunn; Francisco Sánchez-Madrid

Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown. Here we describe sequence motifs present in miRNAs that control their localization into exosomes. The protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds exosomal miRNAs through the recognition of these motifs and controls their loading into exosomes. Moreover, hnRNPA2B1 in exosomes is sumoylated, and sumoylation controls the binding of hnRNPA2B1 to miRNAs. The loading of miRNAs into exosomes can be modulated by mutagenesis of the identified motifs or changes in hnRNPA2B1 expression levels. These findings identify hnRNPA2B1 as a key player in miRNA sorting into exosomes and provide potential tools for the packaging of selected regulatory RNAs into exosomes and their use in biomedical applications.


Nature Reviews Molecular Cell Biology | 2012

Intercellular communication: diverse structures for exchange of genetic information

María Mittelbrunn; Francisco Sánchez-Madrid

An emerging concept is that cellular communication in mammals can be mediated by the exchange of genetic information, mainly in the form of microRNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are taken up by an acceptor cell. Transfer of genetic material can also occur through intimate membrane contacts between donor and acceptor cells. Specialized cell–cell contacts, such as synapses, have the potential to combine these modes of genetic transfer.


Seminars in Cancer Biology | 2014

Sorting it out: Regulation of exosome loading

Carolina Villarroya-Beltri; Francesc Baixauli; Cristina Gutiérrez-Vázquez; Francisco Sánchez-Madrid; María Mittelbrunn

Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently. Here we review the molecular mechanisms that control the sorting of molecules into exosomes, with special attention to the sorting of RNA. We also discuss how the cellular context affects the composition of exosomes, and thus the outcome of the communication between the exosome-producer and recipient cells, with particular focus on the communication between tumor cells and with cells of the tumor microenvironment.


Immunity | 2004

HDAC6 Deacetylase Activity Links the Tubulin Cytoskeleton with Immune Synapse Organization

Juan M. Serrador; José Román Cabrero; David Sancho; María Mittelbrunn; Ana Urzainqui; Francisco Sánchez-Madrid

We investigated the role of acetylated microtubules in the antigen-specific interaction of T helper and antigen-presenting cells (APCs). In T cells, acetylated microtubules concentrated at contact site with APCs, surrounding clusters of CD3 and LFA-1. TcR engagement induced a transient deacetylation of microtubules at early times and an enhanced acetylation at late times. Confocal videomicroscopy studies revealed that the HDAC6 tubulin deacetylase was translocated and concentrated at the contact site of T cells with APCs. Overexpression of HDAC6 but not a dead deacetylase mutant in T cells disorganized CD3 and LFA-1 at the immune synapse. This effect was reverted by treatment with the deacetylase inhibitor trichostatin A. The antigen-specific translocation of the microtubule organizing center (MTOC) and IL-2 production were also severely impaired by overexpression of HDAC6. Our results underscore the key role for HDAC6 in the organization of the immune synapse and the antigen-specific reorientation of the MTOC.


Journal of Immunology | 2002

Cutting Edge: Dynamic Redistribution of Tetraspanin CD81 at the Central Zone of the Immune Synapse in Both T Lymphocytes and APC

María Mittelbrunn; María Yáñez-Mó; David Sancho; Angeles Ursa; Francisco Sánchez-Madrid

The tetraspanin CD81 has been involved in T-dependent B cell-mediated immune responses. However, the behavior of CD81 during immune synapse (IS) formation has not been elucidated. We determined herein that CD81 redistributed to the contact area of T cell-B cell and T cell-dendritic cell conjugates in an Ag-dependent manner. Confocal microscopy showed that CD81 colocalized with CD3 at the central supramolecular activation complex. Videomicroscopy studies with APC or T cells transiently expressing CD81-green fluorescent protein (GFP) revealed that in both cells CD81 redistributed toward the central supramolecular activation complex. In T lymphocytes, CD81-GFP rapidly redistributed to the IS, whereas, in the APC, CD81-GFP formed a large accumulation in the contact area that later concentrated in a discrete cluster and waves of CD81 accumulated at the IS periphery. These results suggest a relevant role for CD81 in the topography of the IS that would explain its functional implication in T cell-B cell collaboration.


Immunological Reviews | 2013

Transfer of extracellular vesicles during immune cell-cell interactions

Cristina Gutiérrez-Vázquez; Carolina Villarroya-Beltri; María Mittelbrunn; Francisco Sánchez-Madrid

The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and antigen‐presenting cells (APCs) has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs, a term that encompasses exosomes and microvesicles, has been implicated in cell‐cell communication during immune responses associated with tumors, pathogens, allergies, and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell‐cell interactions.


Journal of Cell Biology | 2008

MTOC translocation modulates IS formation and controls sustained T cell signaling

Noa B. Martín-Cófreces; Javier Robles-Valero; J. Román Cabrero; María Mittelbrunn; Mónica Gordón-Alonso; Ching-Hwa Sung; Balbino Alarcón; Jesús Vázquez; Francisco Sánchez-Madrid

The translocation of the microtubule-organizing center (MTOC) toward the nascent immune synapse (IS) is an early step in lymphocyte activation initiated by T cell receptor (TCR) signaling. The molecular mechanisms that control the physical movement of the lymphocyte MTOC remain largely unknown. We have studied the role of the dynein–dynactin complex, a microtubule-based molecular motor, in the process of T cell activation during T cell antigen–presenting cell cognate immune interactions. Impairment of dynein–dynactin complex activity, either by overexpressing the p50-dynamitin component of dynactin to disrupt the complex or by knocking down dynein heavy chain expression to prevent its formation, inhibited MTOC translocation after TCR antigen priming. This resulted in a strong reduction in the phosphorylation of molecules such as ζ chain–associated protein kinase 70 (ZAP70), linker of activated T cells (LAT), and Vav1; prevented the supply of molecules to the IS from intracellular pools, resulting in a disorganized and dysfunctional IS architecture; and impaired interleukin-2 production. Together, these data reveal MTOC translocation as an important mechanism underlying IS formation and sustained T cell signaling.


Frontiers in Immunology | 2014

Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness.

Francesc Baixauli; Carlos López-Otín; María Mittelbrunn

Conditions resulting from loss of cellular homeostasis, including oxidative stress, inflammation, protein aggregation, endoplasmic reticulum stress, metabolic stress, and perturbation of mitochondrial function, are common to many pathological disorders and contribute to aging. Cells face these stress situations by engaging quality control mechanisms aimed to restore cellular homeostasis and preserve cell viability. Among them, the autophagy-lysosomal pathway mediates the specific degradation of damaged proteins and organelles, and its proper function is related to cellular protection and increased life span in many model organisms. Besides autophagy, increasing evidence underscores a role for exosomes in the selective secretion of harmful/damaged proteins and RNAs and thus in the maintenance of cellular fitness. In this perspective article, we discuss the emerging function of exosomes as a means of alleviating intracellular stress conditions, and how secretion of harmful or unwanted material in exosomes, in coordination with the autophagy-lysosomal pathway, is essential to preserve intracellular protein and RNA homeostasis. Finally, we provide an overview about the consequences of the spreading of the exosome content in physiological and pathological situations, and suggest putative therapeutic strategies for these exosome-mediated alterations.

Collaboration


Dive into the María Mittelbrunn's collaboration.

Top Co-Authors

Avatar

Francisco Sánchez-Madrid

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Francisco Sánchez-Madrid

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Cristina Gutiérrez-Vázquez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Carolina Villarroya-Beltri

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Hortensia de la Fuente

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Francesc Baixauli

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

María Yáñez-Mó

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Noa B. Martín-Cófreces

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Angeles Ursa

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jesús Vázquez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Researchain Logo
Decentralizing Knowledge