Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Morga is active.

Publication


Featured researches published by Maria Morga.


Journal of Colloid and Interface Science | 2011

High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers.

Magdalena Oćwieja; Zbigniew Adamczyk; Maria Morga; Aneta Michna

A stable silver nanoparticle suspension was synthesized via the reduction of silver nitrate using sodium borohydride and sodium citrate. The particles shape and size distribution were measured by various methods. The electrophoretic mobility measurements revealed that the zeta potential of particles was highly negative, increasing slightly with the ionic strength, from -52 mV for I=10(-5) M to -35 mV for I=3×10(-2) M (for pH=5.5). The zeta potential of mica modified by the adsorption of cationic polyelectrolytes: PEI and PAH was also determined using the streaming potential measurements. The modified mica sheets were used as substrates for particle monolayers formed via colloid self assembly. The kinetics of this process, proceeding under diffusion-controlled transport conditions, was quantitatively evaluated by a direct enumeration of particles using the AFM and SEM techniques. Both the kinetics of particle deposition and the maximum surface concentration were determined. From the slope of the initial deposition rates, the equivalent diameter of particles was determined to be 16 nm, in agreement with previous measurements. Based on this finding, an efficient method of determining particle size in suspension was proposed. It was also demonstrated that for higher ionic strengths, the maximum coverage of particle monolayers on PAH modified mica exceeded 0.39. The kinetic data were quantitatively interpreted in terms of the random sequential adsorption (RSA) model using the effective hard particle concept.


Journal of Colloid and Interface Science | 2013

Monolayers of cationic polyelectrolytes on mica – Electrokinetic studies

Maria Morga; Zbigniew Adamczyk

Physicochemical properties of cationic polyelectrolytes: poly(allylamine hydrochloride) (PAH), poly(ethylene imine) (PEI), and poly(dimethyldiallylammonium chloride) (PDDA), having molar mass of 70,000, 75,000, and 120,000, respectively, were examined and compared. The bulk characteristics comprised the diffusion coefficient and electrophoretic mobility determined as a function of pH (3.5-9) and ionic strengths (10(-4) M to 0.15 M NaCl). These measurements allowed one to determine theamount of electrokinetic charge of the polyelectrolyte molecules and their isoelectric points. On the other hand, formation of polyelectrolyte monolayers on mica and their properties were investigated using the in situ streaming potential method. Additionally, using this method, the stability of monolayers, evaluated via desorption kinetic measurements, was determined. The investigations showed that PAH molecules form the most stable monolayers, which can be used as supporting layers for particle deposition and multilayer formation.


Advances in Colloid and Interface Science | 2015

Silver particle monolayers — Formation, stability, applications

Magdalena Oćwieja; Zbigniew Adamczyk; Maria Morga; Katarzyna Kubiak

The formation of silver particle monolayers at solid substrates in self-assembly processes is thoroughly reviewed. Initially, various silver nanoparticle synthesis routes are discussed with the emphasis focused on the chemical reduction in aqueous media. Subsequently, the main experimental methods aimed at bulk suspension characterization are critically reviewed by pointing out their advantages and limitations. Also, various methods enabling the in situ studies of particle deposition and release kinetics, especially the streaming potential method are discussed. In the next section, experimental data are invoked illustrating the most important features of particle monolayer formation, in particular, the role of bulk suspension concentration, particle size, ionic strength, temperature and pH. Afterward, the stability of monolayers and particle release kinetics are extensively discussed. The results obtained by the ex situ AFM/SEM imaging of particles are compared with the in situ streaming potential measurements. An equivalency of both methods is demonstrated, especially in respect to the binding energy determination. It is shown that these experimental results can be adequately interpreted in terms of the hybrid theoretical approach that combines the bulk transport step with the surface blocking effects derived from the random sequential adsorption model. It is also concluded that the particle release kinetics is governed by the discrete electrostatic interactions among ion pairs on particle and substrate surfaces. The classical theories based on the mean-field (averaged) zeta potential concept proved inadequate. Using the ion pair concept the minor dependence of the binding energy on particle size, ionic strength, pH and temperature is properly explained. The final sections of this review are devoted to the application of silver nanoparticles and their monolayers in medicine, analytical chemistry and catalysis.


Journal of Colloid and Interface Science | 2012

Hematite nanoparticle monolayers on mica preparation by controlled self-assembly.

Magdalena Oćwieja; Zbigniew Adamczyk; Maria Morga; Elżbieta Bielańska; Adam Węgrzynowicz

A stable suspension of α-Fe(2)O(3) (hematite) was synthesized according to the method of Matijevic and Scheiner by an acidic hydrolysis of ferric chloride. The average size of the particles was determined by dynamic light scattering (DLS) and atomic force microscopy (AFM) and was 22 nm. The electrophoretic mobility and zeta potential of particles were determined as a function of ionic strength and pH. The zeta potential of the hematite particles was positive for pH<8.9 (isoelectric point) and negative otherwise. Using the suspension, systematic studies of particle deposition kinetics on mica were carried out. The coverage of self-assembled particle monolayers was determined by AFM and SEM imaging. Particle deposition was diffusion controlled, with the initial rate proportional to the bulk concentration of particles. On the other hand, for long times, the saturation coverage was attained, increasing systematically with ionic strength. The deposition kinetic runs were adequately reflected by the random sequential adsorption (RSA) model. Additionally, particle desorption kinetics, from previously formed monolayers, were studied using the AFM and SEM methods. It was confirmed that hematite particle desorption was practically negligible within the time period of 60 h. Our experimental data proved, therefore, that it is feasible to produce uniform and stable hematite particle monolayers of desired coverage in self-assembly processes controlled by the bulk suspension concentration and the ionic strength.


Journal of Colloid and Interface Science | 2015

Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements.

Magdalena Oćwieja; Zbigniew Adamczyk; Maria Morga

Physicochemical characteristics of tannic acid (tannin) suspensions comprising its stability for a wide range of ionic strength and pH were thoroughly investigated using UV-vis spectrophotometry, dynamic light scattering and microelectrophoretic measurements. These studies allowed to determine the hydrodynamic diameter of the tannic acid that was 1.63 nm for the pH range 3.5-5.5. For pH above 6.0 the hydrodynamic diameter significantly decreased as a result of the tannin hydrolysis. The electrophoretic mobility measurements confirmed that tannic acid is negatively charged for these values of pH and ionic strength 10(-4)-10(-2) M. Therefore, in order to promote adsorption of tannin molecules on negatively charged mica, the poly(allylamine hydrochloride) (PAH) supporting monolayers were first adsorbed under diffusion transport conditions. The coverage of polyelectrolyte monolayers was regulated by changing bulk concentration of PAH and the adsorption time. The electrokinetic characteristics of bare and PAH-covered mica were determined using the streaming potential measurements. The zeta potential of these PAH monolayers was highly positive, equal to 46 mV for ionic strength of 10(-2) M. The kinetics of tannin adsorption on these PAH supporting monolayers was evaluated by the in situ the streaming potential measurements. The zeta potential of PAH monolayers abruptly decreases with the adsorption of tannin molecules that was quantitatively interpreted in terms of the three-dimensional electrokinetic model. The acid-base characteristics of tannin monolayers were acquired via the streaming potential measurements for a broad range of pH. The obtained results indicate that it is possible to control adsorption of tannin on positively charged surfaces in order to designed new multilayer structures of desirable electrokinetic properties and stability.


Journal of Colloid and Interface Science | 2014

Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

Maria Morga; Zbigniew Adamczyk; Magdalena Oćwieja; Elżbieta Bielańska

Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes.


Journal of Colloid and Interface Science | 2012

Hematite nanoparticle monolayers on mica electrokinetic characteristics.

Maria Morga; Zbigniew Adamczyk; Magdalena Oćwieja

Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22 nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications.


Journal of Colloid and Interface Science | 2015

Influence of supporting polyelectrolyte layers on the coverage and stability of silver nanoparticle coatings.

Magdalena Oćwieja; Zbigniew Adamczyk; Maria Morga; Katarzyna Kubiak

Deposition mechanisms of citrate-stabilized silver nanoparticles 15 nm in diameter on cationic polyelectrolyte supporting layers were evaluated. Initially, the bulk and the electrokinetic properties of cationic polyelectrolytes and their monolayers on mica were determined using in situ streaming potential measurements. Analogously, the size distribution, stability and electrokinetic properties of silver particles were studied using transmission electron microscopy (TEM) and microelectrophoretic measurements. Afterward, the kinetics of silver particle deposition was quantitatively evaluated by a direct enumeration procedure exploiting the atomic force microscopy (AFM) and scanning electron microscopy (SEM) micrographs. Using this method the kinetics of particle adsorption was determined for various polyelectrolyte supporting layers as a function of ionic strength. These experiments were interpreted in terms of the random sequential adsorption (RSA) model. It was found that the highest coverage of 0.35 was obtained for silver monolayers deposited on poly(allylamine hydrochloride) (PAH)-modified mica in the case of higher ionic strength. The release kinetics of nanoparticles was also studied using the SEM and AFM imaging method. Using these experimental data the equilibrium adsorption constant and the binding energy of nanoparticles were calculated by exploiting the RSA approach. The investigations showed that the most stable silver monolayers are obtained for the poly-L-lysine (PLL) supporting layers where the 50% of particle is released after 441h, whereas in the case of PEI the release time was only 9h. These results are consistent with the model of discrete electrostatic interactions among ion pairs. Additionally, the obtained results have practical implication indicating that it is feasible to regulate the rate of silver nanoparticle release by a proper choice of the polyelectrolyte forming the supporting layer.


Journal of Colloid and Interface Science | 2015

Monolayers of poly-l-lysine on mica – Electrokinetic characteristics

Maria Morga; Zbigniew Adamczyk; Sebastian Gödrich; Magdalena Oćwieja; Georg Papastavrou

Physicochemical properties of poly-l-lysine and its monolayers on mica were thoroughly investigated by dynamic light scattering, electrokinetic methods and atomic force microscopy. The hydrodynamic diameter of PLL was equal to 25.5 nm within a wide range of pH and ionic strength. The electrophoretic measurements revealed that the molecules are positively charged for pH<10.5. By exploiting the electrophoretic mobility data, theelectrokinetic charge on the PLL molecules and their zeta potential were calculated. PLL monolayers of controlled coverage were deposited on mica under diffusion-controlled conditions by varying PLL bulk concentration and adsorption time. The electrokinetic characteristics of the monolayers were acquired in situ via streaming potential measurements. These studies allowed to uniquely determine the zeta potential of the monolayers as a function of pH and ionic strength. In this way the isoelectric point of the monolayers can be determined in a more convenient way compared to bulk measurements disturbed by the PLL molecule interactions. The stability of the monolayers under flow conditions was quantitatively evaluated via streaming potential measurements. The adsorption constant and the binding energy depth of PLL molecules were determined for different ionic strengths. These parameters indicate that the PLL monolayers remain stable over prolonged times.


Journal of Colloid and Interface Science | 2017

Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements

Magdalena Oćwieja; Katarzyna Matras-Postołek; Julia Maciejewska-Prończuk; Maria Morga; Zbigniew Adamczyk; Svitlana Sovinska; Adam Żaba; Marta Gajewska; Tomasz Król; Klaudia Cupiał; Michael Bredol

Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10-4 and 10-2M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10-4 and 10-2M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions.

Collaboration


Dive into the Maria Morga's collaboration.

Top Co-Authors

Avatar

Zbigniew Adamczyk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominik Kosior

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aneta Michna

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Kubiak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Para

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge