Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Moroni is active.

Publication


Featured researches published by Maria Moroni.


Oncogene | 2003

Effect of estradiol on estrogen receptor- α gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway

Gerald E. Stoica; Thomas F. Franke; Maria Moroni; Susette C. Mueller; Elisha Morgan; Mary C. Iann; Abigail D. Winder; Ronald Reiter; Anton Wellstein; Mary Beth Martin; Adriana Stoica

Epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and heregulin-β1 (HRG-β1), can modulate the expression and activity of the estrogen receptor-α (ER-α) via the phosphatidylinositol 3-kinase (PI 3-K)/Akt pathway in the ER-α-positive breast cancer cell line, MCF-7. Estradiol can also rapidly activate PI 3-K/Akt in these cells (nongenomic effect). The recent study examines whether Akt is involved in the ER-α regulation by estradiol (genomic effect). Stable transfection of parental MCF-7 cells with a dominant-negative Akt mutant, as well as the PI 3-K inhibitors wortmannin and LY 294,002, blocked the effect of estradiol on ER-α expression and activity by 70–80 and 55–63%, respectively. Stable transfection of MCF-7 cells with a constitutively active Akt mimicked the effect of estradiol. The changes in ER-α expression and activity were abrogated in response to estradiol by an arginine to cysteine mutation in the pleckstrin homology (PH) domain of Akt (R25C), suggesting the involvement of this amino acid in the interaction between Akt and ER-α. Experiments employing selective ErbB inhibitors demonstrate that the effect of estradiol on ER-α expression and activity is mediated by ErbB2 and not by EGFR. Moreover, anchorage-dependent and -independent growth assays, cell cycle and membrane ruffling analyses showed that Akt exerts estrogen-like activity on cell growth and membrane ruffling and that a selective ErbB2 inhibitor, but not anti-ErbB2 antibodies directed to the extracellular domain, can block these effects. In the presence of constitutively active Akt, tamoxifen only partially inhibits cell growth. In contrast, in cells stably transfected with either a dominant-negative Akt or with R25C-Akt, as well as in parental cells in the presence of a selective ErbB2 inhibitor, the effect of estradiol on anchorage-dependent and -independent cell growth was inhibited by 50–75 and 100%, respectively. Dominant-negative Akt inhibited membrane ruffling by 54%; however, R25C-Akt did not have any effect, suggesting that kinase activity plays an important role in this process. Scatchard analysis demonstrated a 67% reduction in estrogen-binding capacity in cells transfected with constitutively active Akt. No change in binding affinity of estradiol to the receptor was observed upon transfection with either Akt mutant. Taken together, our results suggest that estradiol treatment results in binding to membrane ER-α and interaction with a heterodimer containing ErbB2, leading to tyrosine phosphorylation. This results in the activation of PI 3-K and Akt. Akt, in turn, may interact with nuclear ER-α, altering its expression and activity.


Cancer Research | 2004

Progressive Loss of Syk and Abnormal Proliferation in Breast Cancer Cells

Maria Moroni; Viatcheslav A. Soldatenkov; Li Zhang; Ying Zhang; Gerald E. Stoica; Edmund A. Gehan; Banafsheh Rashidi; Baljit Singh; Metin Ozdemirli; Susette C. Mueller

The tumor suppressor gene Syk tyrosine kinase is absent or reduced in invasive breast cancer tissues and cell lines; its loss in breast tissues is linked to poor prognosis and metastasis. Also, evidence shows that in vitro Syk is involved in regulating proliferation. Here, we show by in situ hybridization on breast tissue sections that the loss of Syk expression is progressive during tumor development. Strikingly, Syk is already partially lost in normal epithelial tissue adjacent to the cancer lesion. In vivo, cell proliferation (as measured by the proliferative index Ki67) increased from normal to ductal carcinoma in situ to invasive, whereas Syk in situ staining in the same tissues decreased. In vitro, the presence of Syk was associated with reduced cell proliferation in an epidermal growth factor receptor-overexpressing breast cancer cell line, BT549, whereas changes in apoptosis were undetected. Concomitantly, the kinase activity of the proto-oncogene Src was reduced by ∼30%. A 5-fold increase in abnormal mitoses was observed in the Syk-transfected cells compared with vector control. We propose that Syk is involved in the regulation of cell proliferation, possibly by controlling mechanisms of mitosis and cytokinesis via Src signal transduction pathway(s). Because of its progressive and early loss during tumor onset and development, monitoring of Syk loss in breast epithelial cells by noninvasive techniques such as ductal lavage may be a powerful tool for screening purposes.


PLOS ONE | 2011

Hematological Changes as Prognostic Indicators of Survival: Similarities Between Gottingen Minipigs, Humans, and Other Large Animal Models

Maria Moroni; Eric D. Lombardini; Rudolph E. Salber; Mehdi Kazemzedeh; Vitaly Nagy; Cara H. Olsen; Mark H. Whitnall

Background The animal efficacy rule addressing development of drugs for selected disease categories has pointed out the need to develop alternative large animal models. Based on this rule, the pathophysiology of the disease in the animal model must be well characterized and must reflect that in humans. So far, manifestations of the acute radiation syndrome (ARS) have been extensively studied only in two large animal models, the non-human primate (NHP) and the canine. We are evaluating the suitability of the minipig as an additional large animal model for development of radiation countermeasures. We have previously shown that the Gottingen minipig manifests hematopoietic ARS phases and symptoms similar to those observed in canines, NHPs, and humans. Principal Findings We establish here the LD50/30 dose (radiation dose at which 50% of the animals succumb within 30 days), and show that at this dose the time of nadir and the duration of cytopenia resemble those observed for NHP and canines, and mimic closely the kinetics of blood cell depletion and recovery in human patients with reversible hematopoietic damage (H3 category, METREPOL approach). No signs of GI damage in terms of diarrhea or shortening of villi were observed at doses up to 1.9 Gy. Platelet counts at days 10 and 14, number of days to reach critical platelet values, duration of thrombocytopenia, neutrophil stress response at 3 hours and count at 14 days, and CRP-to-platelet ratio were correlated with survival. The ratios between neutrophils, lymphocytes and platelets were significantly correlated with exposure to irradiation at different time intervals. Significance As a non-rodent animal model, the minipig offers a useful alternative to NHP and canines, with attractive features including ARS resembling human ARS, cost, and regulatory acceptability. Use of the minipig may allow accelerated development of radiation countermeasures.


Health Physics | 2010

TRIAGE DOSE ASSESSMENT FOR PARTIAL-BODY EXPOSURE: DICENTRIC ANALYSIS

Pataje Gs Prasanna; Maria Moroni; Terry C. Pellmar

Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, and physical signals in teeth and fingernails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the “gold standard” of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited, but improvements are in development. The efforts described here bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment, synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties that is based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2 Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. The authors tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Preliminary results support the notion that this approach will be effective under a range of conditions including some partial-body exposures, but may have limitations with low doses or small proportions of irradiated parts of the body. These studies address an important problem in the diagnosis of partial-body irradiation and dose assessment in mass casualties and propose a solution. However, additional work is needed to fully develop and validate the application of DCA to partial-body exposures.


International Journal of Radiation Oncology Biology Physics | 2013

The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

Maria Moroni; Barbara F. Ngudiankama; Christine Christensen; Cara H. Olsen; Rossitsa Owens; Eric D. Lombardini; Rebecca K. Holt; Mark H. Whitnall

PURPOSE We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. METHODS AND MATERIALS Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. RESULTS The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. CONCLUSIONS These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.


PLOS ONE | 2014

Circulating Interleukin-18 as a Biomarker of Total-Body Radiation Exposure in Mice, Minipigs, and Nonhuman Primates (NHP)

Cam T. Ha; Xiang-Hong Li; Dadin Fu; Maria Moroni; Carolyn U. Fisher; Robert Arnott; Venkataraman Srinivasan; Mang Xiao

We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines’ expression and secretion in CD2F1 mouse bone marrow (BM), spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy) at different time points using the enzyme-linked immune sorbent assay (ELISA), immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI). However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5–24 fold) and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs) and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2–4 days post-irradiation and in minipig plasma 1–3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.


International Journal of Molecular Sciences | 2013

Evaluation of the Gamma-H2AX Assay for Radiation Biodosimetry in a Swine Model

Maria Moroni; Daisuke Maeda; Mark H. Whitnall; William M. Bonner; Christophe E. Redon

There is a paucity of large animal models to study both the extent and the health risk of ionizing radiation exposure in humans. One promising candidate for such a model is the minipig. Here, we evaluate the minipig for its potential in γ-H2AX-based biodosimetry after exposure to ionizing radiation using both Cs137 and Co60 sources. γ-H2AX foci were enumerated in blood lymphocytes and normal fibroblasts of human and porcine origin after ex vivo γ-ray irradiation. DNA double-strand break repair kinetics in minipig blood lymphocytes and fibroblasts, based on the γ-H2AX assay, were similar to those observed in their human counterparts. To substantiate the similarity observed between the human and minipig we show that minipig fibroblast radiosensitivity was similar to that observed with human fibroblasts. Finally, a strong γ-H2AX induction was observed in blood lymphocytes following minipig total body irradiation. Significant responses were detected 3 days after 1.8 Gy and 1 week after 3.8 and 5 Gy with residual γ-H2AX foci proportional to the initial radiation doses. These findings show that the Gottingen minipig provides a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans.


Analytical and Bioanalytical Chemistry | 2014

Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species

Jace W. Jones; Gregory Tudor; Alexander Bennett; Ann M. Farese; Maria Moroni; Catherine Booth; Thomas J. MacVittie; Maureen A. Kane

The potential risk of a radiological catastrophe highlights the need for identifying and validating potential biomarkers that accurately predict radiation-induced organ damage. A key target organ that is acutely sensitive to the effects of irradiation is the gastrointestinal (GI) tract, referred to as the GI acute radiation syndrome (GI-ARS). Recently, citrulline has been identified as a potential circulating biomarker for radiation-induced GI damage. Prior to biologically validating citrulline as a biomarker for radiation-induced GI injury, there is the important task of developing and validating a quantitation assay for citrulline detection within the radiation animal models used for biomarker validation. Herein, we describe the analytical development and validation of citrulline detection using a liquid chromatography tandem mass spectrometry assay that incorporates stable-label isotope internal standards. Analytical validation for specificity, linearity, lower limit of quantitation, accuracy, intra- and interday precision, extraction recovery, matrix effects, and stability was performed under sample collection and storage conditions according to the Guidance for Industry, Bioanalytical Methods Validation issued by the US Food and Drug Administration. In addition, the method was biologically validated using plasma from well-characterized mouse, minipig, and nonhuman primate GI-ARS models. The results demonstrated that circulating citrulline can be confidently quantified from plasma. Additionally, circulating citrulline displayed a time-dependent response for radiological doses covering GI-ARS across multiple species.


PLOS ONE | 2014

SYK allelic loss and the role of Syk-regulated genes in breast cancer survival.

Jan Blancato; Ashley Graves; Banafsheh Rashidi; Maria Moroni; Leopold Tchobe; Metin Ozdemirli; Bhaskar Kallakury; Kepher H. Makambi; Catalin Marian; Susette C. Mueller

Heterozygotic loss of SYK, a non-receptor tyrosine kinase, gives rise to mouse mammary tumor formation where Syk protein levels are reduced by about half; loss of SYK mRNA is correlated with invasive cell behavior in in vitro models; and SYK loss has been correlated with distant metastases in patients. Here, allelic loss of the SYK gene was explored in breast ductal carcinoma in situ (DCIS) using fluorescence in situ hybridization and pyrosequencing, respectively, and in infiltrating ductal carcinoma (IDC) using genomic data from The Cancer Genome Atlas (TCGA). Allelic loss was present in a subset of DCIS cases where adjacent IDC was present. SYK copy number loss was found in about 26% of 1002 total breast cancer cases and 30% of IDC cases. Quantitative immunofluorescence revealed Syk protein to be six-fold higher in infiltrating immune cells compared with epithelial cells. This difference distorted tumor cell mRNA and protein levels in extracts. 20% of 1002 IDC cases contained elevated immune cell infiltration as estimated by elevated immune-specific mRNAs. In cases without immune cell infiltration, loss of SYK copy number was associated with a significant reduction of SYK mRNA. Here we define a 55 Gene Set consisting of Syk interacting, motility- and invasion-related genes. We found that overall survival was significantly reduced in IDC and Luminal A+B cases where copy number and mutations of these 55 genes were affected (Kaplan-Meier, Logrank test p-value 0.007141 and Logrank test p-value 0.001198, respectively). We conclude that reduction in Syk expression and contributions of genomic instability to copy number and mutations in the 55 Syk interacting genes significantly contribute to poorer overall patient survival. A closer examination of the role of Syk interacting motility and invasion genes and their prognostic and/or causative association with metastatic disease and patient outcome is warranted.


International Journal of Radiation Biology | 2014

Accelerated hematopoietic syndrome after radiation doses bridging hematopoietic (H-ARS) and gastrointestinal (GI-ARS) acute radiation syndrome: Early hematological changes and systemic inflammatory response syndrome in minipig

Maria Moroni; Thomas B. Elliott; Nicolaas E. P. Deutz; Cara H. Olsen; Rossitsa Owens; Christine Christensen; Eric D. Lombardini; Mark H. Whitnall

Abstract Purpose: To characterize acute radiation syndrome (ARS) sequelae at doses intermediate between the bone marrow (H-ARS) and full gastrointestinal (GI-ARS) syndrome. Methods: Male minipigs, approximately 5 months old, 9–12 kg in weight, were irradiated with Cobalt-60 (total body, bilateral gamma irradiation, 0.6 Gy/min). Endpoints were 10-day survival, gastrointestinal histology, plasma citrulline, bacterial translocation, vomiting, diarrhea, vital signs, systemic inflammatory response syndrome (SIRS), febrile neutropenia (FN). Results: We exposed animals to doses (2.2–5.0 Gy) above those causing H-ARS (1.6–2.0 Gy), and evaluated development of ARS. Compared to what was observed during H-ARS (historical data: 1416), doses above 2 Gy produced signs of increasingly severe pulmonary damage, faster deterioration of clinical conditions, and faster increases in levels of C-reactive protein (CRP). In the range of 4.6–5.0 Gy, animals died by day 9–10; signs of the classic GI syndrome, as measured by diarrhea, vomiting and bacterial translocation, did not occur. At doses above 2 Gy we observed transient reduction in circulating citrulline levels, and animals exhibited earlier depletion of blood elements and faster onset of SIRS and FN. Conclusions: An accelerated hematopoietic subsyndrome (AH-ARS) is observed at radiation doses between those producing H-ARS and GI-ARS. It is characterized by early onset of SIRS and FN, and greater lung damage, compared to H-ARS.

Collaboration


Dive into the Maria Moroni's collaboration.

Top Co-Authors

Avatar

Mark H. Whitnall

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Cara H. Olsen

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Eric D. Lombardini

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Christine Christensen

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Craig D. Shriver

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

George E. Peoples

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jatinder Gulani

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sathibalan Ponniah

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amory Koch

Armed Forces Radiobiology Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge