María N. Padilla
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María N. Padilla.
Journal of Experimental Botany | 2014
Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Mounira Chaki; Raquel Valderrama; Capilla Mata-Pérez; Javier López-Jaramillo; María N. Padilla; Alfonso Carreras; Francisco J. Corpas; Juan B. Barroso
Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.
Journal of Experimental Botany | 2015
Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Mounira Chaki; Capilla Mata-Pérez; Raquel Valderrama; María N. Padilla; Javier López-Jaramillo; Francisco Luque; Francisco J. Corpas; Juan B. Barroso
Highlight Nitration and S-nitrosylation, two post-translational modifications (PTMs) mediated by nitric oxide, differentially regulate MDAR and GR activities which are key components of the ascorbate–glutathione cycle.
Frontiers in Plant Science | 2016
Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Mounira Chaki; Raquel Valderrama; Capilla Mata-Pérez; María N. Padilla; Francisco J. Corpas; Juan B. Barroso
Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.
Biochimica et Biophysica Acta | 2013
Francisco J. Corpas; Marina Leterrier; Juan C. Begara-Morales; Raquel Valderrama; Mounira Chaki; Javier López-Jaramillo; Francisco Luque; José M. Palma; María N. Padilla; Beatriz Sánchez-Calvo; Capilla Mata-Pérez; Juan B. Barroso
BACKGROUND Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported. METHODS We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and proteomic approaches. RESULTS Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO(-) molecule caused the highest inhibition of activity (51% at 5mM SIN-1), with 5mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite. CONCLUSION These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function. GENERAL SIGNIFICANCE This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.
Frontiers in Plant Science | 2015
Capilla Mata-Pérez; Beatriz Sánchez-Calvo; Juan C. Begara-Morales; Francisco Luque; Jaime Jiménez-Ruiz; María N. Padilla; Jesús Fierro-Risco; Raquel Valderrama; Ana Fernández-Ocaña; Francisco J. Corpas; Juan B. Barroso
Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signaling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC) with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2-fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs) and Allene oxide cyclases (AOCs). In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding), such as WRKY, JAZ, MYC, and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signaling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1), methionine sulfoxide reductase (MSR) and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signaling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity) and especially in stresses mediated by ROS.
Redox biology | 2017
Capilla Mata-Pérez; Beatriz Sánchez-Calvo; María N. Padilla; Juan C. Begara-Morales; Raquel Valderrama; Francisco J. Corpas; Juan B. Barroso
Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs). They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO), which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plants development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their implication in plant physiology.
Nitric Oxide | 2016
Capilla Mata-Pérez; Beatriz Sánchez-Calvo; Juan C. Begara-Morales; Alfonso Carreras; María N. Padilla; Manuel Melguizo; Raquel Valderrama; Francisco J. Corpas; Juan B. Barroso
Nitro-fatty acids (NO2-FAs), which are the result of the interaction between reactive nitrogen species (RNS) and non-saturated fatty acids, constitute a new research area in plant systems, and their study has significantly increased. Very recently, the endogenous presence of nitro-linolenic acid (NO2-Ln) has been reported in the model plant Arabidopsis thaliana. In this regard, the signaling role of this molecule has been shown to be key in setting up a defense mechanism by inducing the chaperone network in plants. Here, we report on the ability of NO2-Ln to release nitric oxide (NO) in an aqueous medium with several approaches, such as by a spectrofluorometric probe with DAF-2, the oxyhemoglobin oxidation method, ozone chemiluminescence, and also by confocal laser scanning microscopy in Arabidopsis cell cultures. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation or by the electrophilic capacity of these molecules through a nitroalkylation mechanism.
Frontiers in Plant Science | 2016
Capilla Mata-Pérez; Juan C. Begara-Morales; Mounira Chaki; Beatriz Sánchez-Calvo; Raquel Valderrama; María N. Padilla; Francisco J. Corpas; Juan B. Barroso
In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions.
Plant Signaling & Behavior | 2016
Capilla Mata-Pérez; Beatriz Sánchez-Calvo; Juan C. Begara-Morales; María N. Padilla; Raquel Valderrama; Francisco J. Corpas; Juan B. Barroso
ABSTRACT In recent years, research on the involvement of nitric oxide (NO) in plant systems has remarkably grown. However, most of the interest in this molecule has been focused on its ability to mediate different post-translational modifications (NO-PTM) in biomolecules, mainly nitration and S-nitrosylation of proteins, and its involvement in physiological and stress situations. Nevertheless, very recently the nitration of other molecules such as fatty acids has commanded increasingly greater attention. In the last February issue of Plant Physiology, we again reported on the endogenous occurrence of nitro-fatty acids (NO2-FAs), specifically nitro-linolenic acid (NO2-Ln), in the model plant Arabidopsis thaliana. The analysis of the presence of this nitro-fatty acid showed that levels of NO2-Ln decreased throughout the plant development with the higher levels detected in seeds and young seedlings of this plant. Furthermore, through a transcriptomic analysis by RNA-seq technology applying NO2-Ln to A. thaliana cell-suspension cultures, we found high induction in the transcriptional expression of several heat-shock proteins (HSPs) and the enzymes ascorbate peroxidase (APX) and methionine sulfoxide reductase (MSR). Based on these findings, the involvement of NO2-Ln in the NO metabolism was analyzed showing a significant NO formation in roots from 7-day-old Arabidopsis thaliana seedlings and standing out that NO generated from NO2-Ln could have an important role at the beginning of plant development. Therefore, these findings highlight the importance of these novel NO-derived molecules in plant systems playing a pivotal role in development and in the antioxidant defense response against different abiotic stress conditions.
Journal of Experimental Botany | 2018
Juan C. Begara-Morales; Mounira Chaki; Raquel Valderrama; Beatriz Sánchez-Calvo; Capilla Mata-Pérez; María N. Padilla; Francisco J. Corpas; Juan B. Barroso
Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of an NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In recent years, SNOs have risen as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH). GSNO is considered the major NO reservoir and a phloem mobile signal that confers to NO the capacity to be a long-distance signalling molecule. GSNO is able to regulate protein function and gene expression, resulting in a key role for GSNO in fundamental processes in plants, such as development and response to a wide range of environmental stresses. In addition, GSNO is also able to regulate the total SNO pool and, consequently, it could be considered the storage of NO in cells that may control NO signalling under basal and stress-related responses. Thus, GSNO function could be crucial during plant response to environmental stresses. Besides the importance of GSNO in plant biology, its mode of action has not been widely discussed in the literature. In this review, we will first discuss the GSNO turnover in cells and secondly the role of GSNO as a mediator of physiological and stress-related processes in plants, highlighting those aspects for which there is still some controversy.