Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Nethander is active.

Publication


Featured researches published by Maria Nethander.


PLOS Genetics | 2012

WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

Hou-Feng Zheng; Jon H Tobias; Emma L. Duncan; David Evans; Joel Eriksson; Lavinia Paternoster; Laura M. Yerges-Armstrong; Terho Lehtimäki; Ulrica Bergström; Mika Kähönen; Paul Leo; Olli T. Raitakari; Marika Laaksonen; Geoffrey C. Nicholson; Jorma Viikari; Martin Ladouceur; Leo-Pekka Lyytikäinen; Carolina Medina-Gomez; Fernando Rivadeneira; Richard L. Prince; Harri Sievänen; William D. Leslie; Dan Mellström; John A. Eisman; Sofia Movérare-Skrtic; David Goltzman; David A. Hanley; Graeme Jones; Beate St Pourcain; Yongjun Xiao

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13<P<5.9×10−4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture.


Proceedings of the National Academy of Sciences of the United States of America | 2010

High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset

Helena Carén; Hanna Kryh; Maria Nethander; Rose-Marie Sjöberg; Catarina Träger; Staffan Nilsson; Jonas Abrahamsson; Per Kogner; Tommy Martinsson

Analysis of chromosomal aberrations is used to determine the prognosis of neuroblastomas (NBs) and to aid treatment decisions. MYCN amplification (MNA) alone is an incomplete poor prognostic factor, and chromosome 11q status has recently been included in risk classification. We analyzed 165 NB tumors using high-density SNP microarrays and specifically compared the high-risk groups defined by MNA (n = 37) and 11q-deletion (n = 21). Median patient age at diagnosis was 21 months for MNA tumors and 42 months for 11q-deletion tumors, and median survival time after diagnosis was 16 months for MNA and 40 months for 11q deletion. Overall survival (at 8 years) was ∼35% in both groups. MNA and 11q deletion were almost mutually exclusive; only one case harbored both aberrations. The numbers of segmental aberrations differed significantly; the MNA group had a median of four aberrations, whereas the 11q-deletion group had 12. The high frequency of chromosomal breaks in the 11q-deletion group is suggestive of a chromosomal instability phenotype gene located in 11q; one such gene, H2AFX, is located in 11q23.3 (within the 11q-deletion region). Furthermore, in the groups with segmental aberrations without MNA or 11q deletion, the tumors with 17q gain have worse prognosis than those with segmental aberrations without 17q gain, which have a favorable outcome. This study has implications for therapy in different risk groups and stresses that genome-wide microarray analyses should be included in clinical management to fully evaluate risk, aid diagnosis, and guide treatment.


PLOS Genetics | 2013

Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure

Lavinia Paternoster; Mattias Lorentzon; Terho Lehtimäki; Joel Eriksson; Mika Kähönen; Olli T. Raitakari; Marika Laaksonen; Harri Sievänen; Jorma Viikari; Leo-Pekka Lyytikäinen; Dan Mellström; Magnus Karlsson; Östen Ljunggren; Elin Grundberg; John P. Kemp; Adrian E Sayers; Maria Nethander; David Evans; Liesbeth Vandenput; Jonathan H Tobias; Claes Ohlsson

Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic variant in the RANKL locus influences cortical vBMD, at least partly, via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences GREM2 expression in osteoblasts and thereby trabecular number and thickness as well as fracture risk.


Aging Cell | 2016

Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

Alexander Teumer; Qibin Qi; Maria Nethander; Hugues Aschard; Stefania Bandinelli; Marian Beekman; Sonja I. Berndt; Martin Bidlingmaier; Linda Broer; Anne R. Cappola; Gian Paolo Ceda; Stephen J. Chanock; Ming-Huei Chen; Tai C. Chen; Yii-Der Ida Chen; Jonathan H. Chung; Fabiola Del Greco Miglianico; Joel Eriksson; Luigi Ferrucci; Nele Friedrich; Carsten Gnewuch; Mark O. Goodarzi; Niels Grarup; Tingwei Guo; Elke Hammer; Richard B. Hayes; Andrew A. Hicks; Albert Hofman; Jeanine J. Houwing-Duistermaat; Frank B. Hu

The growth hormone/insulin‐like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF‐related proteins including IGF‐I and IGF‐binding protein‐3 (IGFBP‐3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF‐I and IGFBP‐3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype–phenotype associations between men and women, were found only for associations of IGFBP‐3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF‐I and IGFBP‐3 concentrations. The IGF‐I‐decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity‐associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF‐I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF‐I‐ and IGFBP‐3‐associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF‐I and IGFBP‐3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity‐associated loci.


PLOS ONE | 2012

Tumor Development, Growth Characteristics and Spectrum of Genetic Aberrations in the TH-MYCN Mouse Model of Neuroblastoma

Agnes Rasmuson; Lova Segerström; Maria Nethander; Jennie Finnman; Lotta Elfman; Niloufar Javanmardi; Staffan Nilsson; John Inge Johnsen; Tommy Martinsson; Per Kogner

Background The TH-MYCN transgenic neuroblastoma model, with targeted MYCN expression to the developing neural crest, has been used to study neuroblastoma development and evaluate novel targeted tumor therapies. Methods We followed tumor development in 395 TH-MYCN (129X1/SvJ) mice (125 negative, 206 hemizygous and 64 homozygous mice) by abdominal palpations up to 40 weeks of age. DNA sequencing of MYCN in the original plasmid construct and mouse genomic DNA was done to verify the accuracy. Copy number analysis with Affymetrix® Mouse Diversity Genotyping Arrays was used to characterize acquired genetic aberrations. Results DNA sequencing confirmed presence of human MYCN cDNA in genomic TH-MYCN DNA corresponding to the original plasmid construct. Tumor incidence and growth correlated significantly to transgene status with event-free survival for hemizygous mice at 50%, and 0% for homozygous mice. Hemizygous mice developed tumors at 5.6–19 weeks (median 9.1) and homozygous mice at 4.0–6.9 weeks (5.4). The mean treatment window, time from palpable tumor to sacrifice, for hemizygous and homozygous mice was 15 and 5.2 days, respectively. Hemizygous mice developing tumors as early as homozygous mice had a longer treatment window. Age at tumor development did not influence treatment window for hemizygous mice, whereas treatment window in homozygous mice decreased significantly with increasing age. Seven out of 10 analysed tumors had a flat DNA profile with neither segmental nor numerical chromosomal aberrations. Only three tumors from hemizygous mice showed acquired genetic features with one or more numerical aberrations. Of these, one event corresponded to gain on the mouse equivalent of human chromosome 17. Conclusion Hemizygous and homozygous TH-MYCN mice have significantly different neuroblastoma incidence, tumor growth characteristics and treatment windows but overlap in age at tumor development making correct early genotyping essential to evaluate therapeutic interventions. Contrasting previous studies, our data show that TH-MYCN tumors have few genetic aberrations.


Cancer Cell International | 2011

A 6-gene signature identifies four molecular subgroups of neuroblastoma

Frida Abel; Daniel Dalevi; Maria Nethander; Rebecka Jörnsten; Katleen De Preter; Joëlle Vermeulen; Raymond L. Stallings; Per Kogner; John M. Maris; Staffan Nilsson

BackgroundThere are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis.ResultsThe present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fishers exact test).ConclusionsBased on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this groups specific characteristics.


Journal of The American Society of Nephrology | 2017

Genetic Variants Associated with Circulating Parathyroid Hormone

Cassianne Robinson-Cohen; Pamela L. Lutsey; Marcus E. Kleber; Carrie M. Nielson; Braxton D. Mitchell; Joshua C. Bis; Karen M. Eny; Laura Portas; Joel Eriksson; Mattias Lorentzon; Daniel L. Koller; Yuri Milaneschi; Alexander Teumer; Stefan Pilz; Maria Nethander; Elizabeth Selvin; Weihong Tang; Lu-Chen Weng; Hoi Suen Wong; Dongbing Lai; Munro Peacock; Anke Hannemann; Uwe Völker; Georg Homuth; Matthias Nauk; Federico Murgia; Jack W. Pattee; Eric S. Orwoll; Joseph M. Zmuda; José A. Riancho

Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies (n=22,653 and n=6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 (P=4.2 × 10-53), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 (P=6.6 × 10-17), rs219779 adjacent to CLDN14 (P=3.5 × 10-16), rs4443100 near RTDR1 (P=8.7 × 10-9), and rs73186030 near CASR (P=4.8 × 10-8). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued.


Journal of Bone and Mineral Research | 2017

The Limited Clinical Utility of Testosterone, Estradiol, and Sex Hormone Binding Globulin Measurements in the Prediction of Fracture Risk and Bone Loss in Older Men

Eric S. Orwoll; Jodi Lapidus; Patty Y. Wang; Liesbeth Vandenput; Andrew R. Hoffman; Howard A. Fink; Gail A. Laughlin; Maria Nethander; Östen Ljunggren; Andreas Kindmark; Mattias Lorentzon; Magnus Karlsson; Dan Mellström; Anthony Kwok; Sundeep Khosla; Timothy Kwok; Claes Ohlsson

Measurement of serum testosterone (T) levels is recommended in the evaluation of osteoporosis in older men and estradiol (E2) and sex hormone binding globulin (SHBG) levels are associated with the rate of bone loss and fractures, but the clinical utility of sex steroid and SHBG measurements for the evaluation of osteoporosis in men has not been examined. To evaluate whether measurements of T, E2, and/or SHBG are useful for the prediction of fracture risk or the rate of bone loss in older men, we analyzed longitudinal data from 5487 community‐based men participating in the Osteoporotic Fractures in Men (MrOS) study in the United States, Sweden, and Hong Kong. Serum T, E2, and SHBG levels were assessed at baseline; incident fractures were self‐reported at 4‐month intervals with radiographic verification (US), or ascertained via national health records (Sweden, Hong Kong). Rate of bone loss was assessed by serial measures of hip bone mineral density (BMD). We used receiver operating characteristic (ROC) curves, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) to assess improvement in prediction. Mean age at baseline was 72 to 75 years and the prevalence of low T levels (<300 ng/dL) was 7.6% to 21.3% in the three cohorts. There were 619 incident major osteoporotic and 266 hip fractures during follow‐up of approximately 10 years. Based on ROC curves, there were no improvements in fracture risk discrimination for any biochemical measure when added to models, including the Fracture Risk Assessment Tool (FRAX) with BMD. Although minor improvements in NRI were observed for the dichotomous parameters low bioavailable E2 (BioE2) (<11.4 pg/mL) and high SHBG (>59.1 nM), neither sex steroids nor SHBG provided clinically useful improvement in fracture risk discrimination. Similarly, they did not contribute to the prediction of BMD change. In conclusion, there is limited clinical utility of serum E2, T, and SHBG measures for the evaluation of osteoporosis risk in elderly men.


Journal of Bone and Mineral Research | 2017

Low Testosterone, but not Estradiol, Is Associated with Incident Falls in Older Men - The International MrOS Study.

Liesbeth Vandenput; Dan Mellström; Gail A. Laughlin; Peggy M. Cawthon; Jane A. Cauley; Andrew R. Hoffman; Magnus Karlsson; Björn E. Rosengren; Östen Ljunggren; Maria Nethander; Anna L. Eriksson; Mattias Lorentzon; Jason Leung; Timothy Kwok; Eric S. Orwoll; Claes Ohlsson

Fracture risk is determined by bone strength and the risk of falls. The relationship between serum sex steroids and bone strength parameters in men is well known, whereas the predictive value of sex steroids for falls is less studied. The aim of this study was to assess the associations between serum testosterone (T) and estradiol (E2) and the likelihood of falls. Older men (aged ≥65 years) from the United States (n = 1919), Sweden (n = 2495), and Hong Kong (n = 1469) participating in the Osteoporotic Fractures in Men Study had baseline T and E2 analyzed by mass spectrometry. Bioavailable (Bio) levels were calculated using mass action equations. Incident falls were ascertained every 4 months during a mean follow‐up of 5.7 years. Associations between sex steroids and falls were estimated by generalized estimating equations. Fall rate was highest in the US and lowest in Hong Kong (US 0.50, Sweden 0.31, Hong Kong 0.12 fall reports/person/year). In the combined cohort of 5883 men, total T (odds ratio [OR] per SD increase = 0.88, 95% confidence interval [CI] 0.86–0.91) and BioT (OR = 0.86, 95% CI 0.83–0.88) were associated with incident falls in models adjusted for age and prevalent falls. These associations were only slightly attenuated after simultaneous adjustment for physical performance variables (total T: OR = 0.94, 95% CI 0.91–0.96; BioT: OR = 0.91, 95% CI 0.89–0.94). E2, BioE2, and sex hormone‐binding globulin (SHBG) were not significantly associated with falls. Analyses in the individual cohorts showed that both total T and BioT were associated with falls in MrOS US and Sweden. No association was found in MrOS Hong Kong, and this may be attributable to environmental factors rather than ethnic differences because total T and BioT predicted falls in MrOS US Asians. In conclusion, low total T and BioT levels, but not E2 or SHBG, are associated with increased falls in older men.


Aging; 9(1), pp 209-246 (2017) | 2017

The complex genetics of gait speed: Genome-wide meta-analysis approach

Dan Ben-Avraham; David Karasik; Joe Verghese; Kathryn L. Lunetta; Jennifer A. Smith; John D. Eicher; Rotem Vered; Joris Deelen; Alice M. Arnold; Aron S. Buchman; Toshiko Tanaka; Jessica D. Faul; Maria Nethander; Myriam Fornage; Hieab H.H. Adams; Amy M. Matteini; Michele L. Callisaya; Albert V. Smith; Lei Yu; Philip L. De Jager; Denis A. Evans; Vilmundur Gudnason; Albert Hofman; Alison Pattie; Janie Corley; Lenore J. Launer; D. S. Knopman; Neeta Parimi; Stephen T. Turner; Stefania Bandinelli

Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.

Collaboration


Dive into the Maria Nethander's collaboration.

Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Dan Mellström

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Eriksson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Staffan Nilsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge