Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Noel Alvarez is active.

Publication


Featured researches published by María Noel Alvarez.


Free Radical Biology and Medicine | 2001

UNRAVELING PEROXYNITRITE FORMATION IN BIOLOGICAL SYSTEMS

Rafael Radi; Gonzalo Peluffo; María Noel Alvarez; Mercedes Naviliat; Alfonso Cayota

Peroxynitrite promotes oxidative damage and is implicated in the pathophysiology of various diseases that involve accelerated rates of nitric oxide and superoxide formation. The unambiguous detection of peroxynitrite in biological systems is, however, difficult due to the combination of a short biological half-life, limited diffusion, multiple target molecule reactions, and participation of alternative oxidation/nitration pathways. In this review, we provide the conceptual framework and a comprehensive analysis of the current experimental strategies that can serve to unequivocally define the existence and quantitation of peroxynitrite in biological systems of different levels of organization and complexity.


Biochemical Journal | 2007

Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression

Lucía Piacenza; Florencia Irigoín; María Noel Alvarez; Gonzalo Peluffo; Martin C. Taylor; John M. Kelly; Shane R. Wilkinson; Rafael Radi

Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2*-. Accelerated rates of mitochondrial O2*- production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2*- in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O(2)(*-) formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects.


Biochemical Journal | 2008

Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite

Lucía Piacenza; Gonzalo Peluffo; María Noel Alvarez; John M. Kelly; Wilkinson; Rafael Radi

There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.


Current Opinion in Microbiology | 2009

Fighting the oxidative assault: the Trypanosoma cruzi journey to infection

Lucía Piacenza; María Noel Alvarez; Gonzalo Peluffo; Rafael Radi

Activation of professional phagocytes with the concomitant generation of oxidant species is a medullar innate immune process for the control of acute Trypanosoma cruzi infection. Recent data reinforce the hypothesis that parasites more prepared to deal with the host-oxidative assault are more efficient for the establishment of Chagas disease. For instance, parasites overexpressing peroxiredoxins are more resistant to macrophage-derived peroxynitrite, a key cytotoxic oxidant produced in the phagosome towards the internalized parasite. Differentiation to the infective metacyclic trypomastigote is accompanied by an increased expression of antioxidant enzymes. Moreover, augmented antioxidant enzyme expression and activities correlate with higher parasite virulence in experimental infections. The potency of the parasite antioxidant armamentarium influences the final fate of the Trypanosoma cruzi journey to macrophage invasion at the onset of infection.


Biochemical Journal | 2009

Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate.

Ana M. Ferreira; Mariana Ferrari; Andrés Trostchansky; Carlos Batthyany; José M. Souza; María Noel Alvarez; Gloria V. López; Paul R. S. Baker; Francisco J. Schopfer; Valerie Bridget O'Donnell; Bruce A. Freeman; Homero Rubbo

Nitroalkene derivatives of fatty acids act as adaptive, anti-inflammatory signalling mediators, based on their high-affinity PPARgamma (peroxisome-proliferator-activated receptor gamma) ligand activity and electrophilic reactivity with proteins, including transcription factors. Although free or esterified lipid nitroalkene derivatives have been detected in human plasma and urine, their generation by inflammatory stimuli has not been reported. In the present study, we show increased nitration of cholesteryl-linoleate by activated murine J774.1 macrophages, yielding the mononitrated nitroalkene CLNO2 (cholesteryl-nitrolinoleate). CLNO2 levels were found to increase approximately 20-fold 24 h after macrophage activation with Escherichia coli lipopolysaccharide plus interferon-gamma; this response was concurrent with an increase in the expression of NOS2 (inducible nitric oxide synthase) and was inhibited by the (*)NO (nitric oxide) inhibitor L-NAME (N(G)-nitro-L-arginine methyl ester). Macrophage (J774.1 and bone-marrow-derived cells) inflammatory responses were suppressed when activated in the presence of CLNO2 or LNO2 (nitrolinoleate). This included: (i) inhibition of NOS2 expression and cytokine secretion through PPARgamma and *NO-independent mechanisms; (ii) induction of haem oxygenase-1 expression; and (iii) inhibition of NF-kappaB (nuclear factor kappaB) activation. Overall, these results suggest that lipid nitration occurs as part of the response of macrophages to inflammatory stimuli involving NOS2 induction and that these by-products of nitro-oxidative reactions may act as novel adaptive down-regulators of inflammatory responses.


Antioxidants & Redox Signaling | 2013

Trypanosoma cruzi Antioxidant Enzymes As Virulence Factors in Chagas Disease

Lucía Piacenza; Gonzalo Peluffo; María Noel Alvarez; Alejandra Martínez; Rafael Radi

SIGNIFICANCE Chagas disease (CD) affects several million people in Latin America and is spreading beyond its classical boundaries due to the migration of infected host and insect vectors, HIV co-infection, and blood transfusion. The current therapy is not adequate for treatment of the chronic phase of CD, and new drugs are warranted. RECENT ADVANCES Trypanosoma cruzi is equipped with a specialized and complex network of antioxidant enzymes that are located at different subcellular compartments which defend the parasite against host oxidative assaults. Recently, strong evidence has emerged which indicates that enzyme components of the T. cruzi antioxidant network (cytosolic and mitochondrial peroxiredoxins and trypanothione synthetase) in naturally occurring strains act as a virulence factor for CD. This precept is recapitulated with the observed increased resistance of T. cruzi peroxirredoxins overexpressers to in vivo or in vitro nitroxidative stress conditions. In addition, the modulation of mitochondrial superoxide radical levels by iron superoxide dismutase (FeSODA) influences parasite programmed cell death, underscoring the role of this enzyme in parasite survival. CRITICAL ISSUES The unraveling of the biological significance of FeSODs in T. cruzi programmed cell death in the context of chronic infection in CD is still under examination. FUTURE DIRECTIONS The role of the antioxidant enzymes in the pathogenesis of CD, including parasite virulence and persistence, and their feasibility as pharmacological targets justifies further investigation.


Biofactors | 2014

Peroxynitrite, a potent macrophage‐derived oxidizing cytotoxin to combat invading pathogens

Carolina Prolo; María Noel Alvarez; Rafael Radi

Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill micro‐organisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage‐derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens.


Free Radical Biology and Medicine | 2013

Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages.

Lucía González-Perilli; María Noel Alvarez; Carolina Prolo; Rafael Radi; Homero Rubbo; Andrés Trostchansky

Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species under proinflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2(•-)) due to the NADPH-dependent univalent reduction of oxygen to O2(•-) by the phagocytic NADPH oxidase isoform (NOX2), the activity of NOX2 being the main source of O2(•-) in monocytes/macrophages. Because the NOX2 and AA pathways are connected, we propose that AANO2 can modulate macrophage activation by inhibiting O2(•-) formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex red fluorescence, and flow cytometry; this process also occurs under physiological mimic conditions within the phagosomes. AANO2 decreased O2(•-) production in a dose- (IC50=4.1±1.8 μM AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g., p40(phox) and p47(phox)), as analyzed by immunoprecipitation and Western blot. However, a reduction in the migration to the membrane of p47(phox) was obtained, suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, in which subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate-treated mice.


Free Radical Biology and Medicine | 2016

Sensitive Detection and Estimation of Cell-Derived Peroxynitrite Fluxes Using Fluorescein-Boronate

Natalia Rios; Lucía Piacenza; Madia Trujillo; Alejandra Martínez; Verónica Demicheli; Carolina Prolo; María Noel Alvarez; Gloria V. López; Rafael Radi

The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.


Free Radical Biology and Medicine | 2015

Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages

Carolina Prolo; María Noel Alvarez; Natalia Rios; Gonzalo Peluffo; Rafael Radi; Natalia Romero

Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (•)NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected.

Collaboration


Dive into the María Noel Alvarez's collaboration.

Top Co-Authors

Avatar

Rafael Radi

University of the Republic

View shared research outputs
Top Co-Authors

Avatar

Lucía Piacenza

University of the Republic

View shared research outputs
Top Co-Authors

Avatar

Gonzalo Peluffo

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Carolina Prolo

University of the Republic

View shared research outputs
Top Co-Authors

Avatar

Natalia Rios

University of the Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Homero Rubbo

University of the Republic

View shared research outputs
Top Co-Authors

Avatar

Madia Trujillo

University of the Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge