Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Paola Melis is active.

Publication


Featured researches published by Maria Paola Melis.


Journal of Nutritional Biochemistry | 1996

Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues

Sebastiano Banni; Gianfranca Carta; Maria S. Contini; Elisabetta Angioni; Monica Deiana; Maria Assunta Dessì; Maria Paola Melis; Francesco P. Corongiu

Conjugated diene isomers of linoleic acid (CLA), possess anticarcinogenic and antiatherogenic properties, but little is known about their metabolism. We have recently obtained evidence that CLA present in partially hydrogenated oil can be metabolized to conjugated linolenic and eicosatrienoic acids in rat liver. In the present study, we have investigated whether CLA are metabolized in the liver of lambs, which normally consume high levels of CLA produced in the rumen and present in their diet, consisting exclusively of milk. Conjugated linolenic, eicosatrienoic, and arachidonic acids were detected in lamb liver phospholipids showing that elongation and desaturation of CLA occur also in lamb tissues, and that all metabolites maintain the conjugated diene structure.


Nutrition and Cancer | 2002

Conjugated linoleic acid isomers and mammary cancer prevention.

Clement Ip; Yan Dong; Margot M. Ip; Sebastiano Banni; Gianfranca Carta; Elisabetta Angioni; Elisabetta Murru; Simona Spada; Maria Paola Melis; Asgeir Saebo

There is increasing evidence that individual isomers of conjugated linoleic acid (CLA) may have unique biological or biochemical effects. A primary objective of this study was to determine whether there might be differences in the anticancer activity of 9,11-CLA and 10,12-CLA. This was achieved by evaluating the reduction in premalignant lesions and carcinomas in the mammary gland of rats that had been treated with a single dose of methylnitrosourea and given 0.5% of either highly purified CLA isomer in the diet. Our results showed that the anticancer efficacies of the two isomers were very similar. At 6 wk after carcinogen administration, the total number of premalignant lesions was reduced by 33-36%. At 24 wk, the total number of mammary carcinomas was reduced by 35-40%. The concentration of each CLA isomer and its respective metabolites was analyzed in the mammary fat pad. Tissue level of 10,12-CLA was much lower than that of 9,11-CLA. The pool of metabolites from each isomer was very similar between the two groups and represented only a small fraction of total conjugated diene fatty acids. Feeding of 9,11-CLA resulted in minimal changes in other unsaturated fatty acids. In contrast, feeding of 10,12-CLA produced a wider spectrum of perturbations. Small but significant increases in 16:1 and 16:2 were detected; these were accompanied by decreases in 20:2, 20:3, 20:4, 22:4, and 22:6. The above observation suggests that 10,12-CLA might be more potent than 9,11-CLA in interfering with elongation and desaturation of linoleic and linolenic acids. In summary, our study showed that, at the 0.5% dose level, the anticancer activity of 9,11-CLA and 10,12-CLA was very similar, even though accumulation of 10,12-CLA in the mammary tissue was considerably less than that of 9,11-CLA. These confounding changes of the other unsaturated fatty acids in contributing to the effect of 10,12-CLA need to be clarified.


Nutrition and Cancer | 2001

Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland

Sebastiano Banni; Elisabetta Angioni; Elisabetta Murru; Gianfranca Carta; Maria Paola Melis; Dale E. Bauman; Yan Dong; Clement Ip

The objective of this report was to determine whether vaccenic acid (t11-18:1) is converted efficiently to conjugated linoleic acid (c9,t11-18:2, CLA) in rats via the Δ2-desaturase reaction and, if so, whether vaccenic acid could substitute for CLA as an anticancer agent. In Study 1, rats were fed 1%, 2%, or 3% vaccenic acid in their diet, and tissue levels of CLA and CLA metabolites were determined in liver and mammary gland. In general, concentrations of CLA and CLA metabolites increased proportionately with an increase in vaccenic acid intake, at least up to the 2% dose level. Beyond this dose, there was clearly a plateauing effect. Thus vaccenic acid concentration increased from an undetectable level in the control to 78.5 nmol/mg lipid in the liver of rats fed a 2% vaccenic acid diet. This was accompanied by an increase in CLA from 2.3 to 33.6 nmol/mg lipid. These changes were also mirrored in the mammary gland, where increases in vaccenic acid (from 27.5 to 163.2 nmol/mg lipid) and CLA (from 17.8 to 108.9 nmol/mg lipid) were similarly observed. Vaccenic acid at 2% produced a CLA concentration in the mammary gland that was historically associated with a positive response in tumor inhibition based on our past experience. This provided the basis for selecting 2% vaccenic acid in Study 2, which was designed to evaluate its efficacy in blocking the development of premalignant lesions in the rat mammary gland. In this experiment, formation of histologically identifiable pathology due to intraductal proliferation of terminal end bud cells of mammary epithelium was used as the end point of analysis at 6 wk after carcinogen administration. Treatment with vaccenic acid reduced the total number of these premalignant lesions by ~50%. We hypothesize that the anticancer response to vaccenic acid is likely to be mediated by its endogenous conversion to CLA via Δ2-desaturase.


Lipids | 2004

Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFA

Sebastiano Banni; A. Petroni; M. Blasevich; Gianfranca Carta; Lina Cordeddu; Elisabetta Murru; Maria Paola Melis; Anne Mahon; Martha A. Belury

One of the possibilities for distinct actions of c9,t11- and the t10,c12-conjugated linoleic acid (CLA) isomers may be at the level of metabolism since the conjugated diene structure gives to CLA isomers and their metabolites a distinct pattern of incorporation into the lipid fraction and metabolism. In fact, CLA appears to undergo similar transformations as linoleic acid but with subtle isomer differences, which may account for their activity in lowering linoleic acid metabolites in those tissues rich in neutral lipids where CLA is preferentially incorporated. Furthermore, c9,t11 and t10,c12 isomers are metabolized at a different rate in the peroxisomes, where the shortened metabolite from t10,c12 is formed at a much higher proportion than the metabolite from c9,t11. This may account for the lower accumulation of t10,c12 isomer into cell lipids. CLA isomers may therefore be viewed as a “new” family of polyunsaturated fatty acids (PUFA) producing a distinct range of metabolites using the same enzymatic system as the other (i.e., n−3, n−6 and n−9) PUFA families. It is likely that perturbation of PUFA metabolism by CLA will have an impact on eicosanoid formation and metabolism, closely linked to the biological activities attributed to CLA.


Food Chemistry | 2011

Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress.

Antonella Rosa; Carlo Ignazio Giovanni Tuberoso; Angela Atzeri; Maria Paola Melis; Ersilia Bifulco; Maria Assunta Dessì

The antioxidant activity of several honeys was evaluated considering the different contribution of entire samples. The strawberry tree honey emerged as the richest in total phenols and the most active honey in the DPPH and FRAP tests, and could protect cholesterol against oxidative degradation (140°C). Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA), the main phenolic compound from strawberry tree honey, showed interesting antioxidant and antiradical activities, and protective effect against thermal-cholesterol degradation, comparable to those of well known antioxidants. Moreover, the pre-treatment with HGA significantly preserved liposomes and LDL from Cu(2+)-induced oxidative damage at 37°C for 2h, inhibiting the reduction of polyunsaturated fatty acids and cholesterol and the increase of their oxidative products. This phenol had no toxic effect in human intestinal epithelial Caco-2 cells within the concentration range tested (5-1000μM). HGA was able to pass through the Caco-2 monolayers, the apparent permeability coefficients (Papp) in the apical-to-basolateral and basolateral-to-apical direction were 3.48±1.22×10(-6) and 2.18±0.34×10(-6)cm/s, respectively, suggesting a passive diffusion pathway as the dominating process. The results of the work qualify HGA as natural antioxidant, able to exert a significant in vitro protective effect and to contribute to the strawberry tree honey antioxidant activity.


Free Radical Research | 1996

A Novel Approach to Study Linoleic Acid Autoxidation: Importance of Simultaneous Detection of the Substrate and its Derivative Oxidation Products

Sebastlano Banni; Maria S. Contini; Elisabetta Angioni; Monica Deiana; Maria Assunta Dessì; Maria Paola Melis; Gianfranca Carta; Francesco P. Corongiu

In this paper we have proposed a novel approach for studying the reaction of lipid oxidation by using the simplest chemical system available. Neat linoleic acid was incubated for 24 hours at 37 degrees C in the air. The course of lipid oxidation was followed by measuring simultaneously by HPLC with a diode array detector 1) linoleic acid decrease, 2) the products formed by radical attack, namely four hydroperoxy-octadeca-dienoic acid (HPODE) isomers, two c,t (c,t) and two trans,trans (t,t). 3) the byproducts formed by HPODE degradations, the four oxo-octadeca-dienoic acid (oxo-ODE) isomers. In HPODEs the presence of conjugated diene chromophore was confirmed by second derivative spectrophotometry. c,t HPODEs were also identified for their positional isomerism, while for t,t molecules the lack of suitable reference compound makes unfeasible the identification of their positional isomerism. As in the case of the latter two c,t and two t,t oxo-ODE isomers were characterized. This simple system appears to be useful for studying the activity exherted by lipophilic molecules that, like alpha-tocopherol, may act as antioxidants and/or as hydrogen atom donating molecules. The presence of alpha-tocopherol in different concentration for 24 hours in the reaction environment, shifts the reaction of linoleic acid autoxidation towards different byproduct formations. From the results obtained it is evident that alpha-tocopherol acts as hydrogen atom donor at all concentration tested, shifting the reaction toward a prevalent formation of c,t isomer of both HPODEs and oxo-ODEs. At concentration lower than 40 nmoles, when the ratio between alpha-tocopherol and linoleic acid was 1:100, the reaction of autoxidation is strongly inhibited, while at higher concentration alpha-tocopherol acted as a prooxidant. In these experimental conditions, alpha-tocopherylquinone was spectrophotometrically identified as the predominant oxidation product of alpha-tocopherol.


Nephron | 1993

Conjugated Diene Fatty Acids in Patients with Chronic Renal Failure: Evidence of Increased Lipid Peroxidation?

Leonardo Lucchi; Sebastiano Banni; Barbara Botti; Gianni Cappelli; Giuseppe Medici; Maria Paola Melis; Aldo Tomasi; Vanio Vannini; Egidio Lusvarghi

Conjugated diene fatty acids (CDFA) were evaluated by second derivative spectrophotometry in the plasma and adipose tissue of 42 chronic renal failure (CFR) patients in conservative treatment, 40 patients treated by hemodialysis (HD) with cuprophane, cellulose acetate or hemophan, 29 treated by hemodiafiltration (HDF) with polysulfone, polyacrylonitrile or polyamide, and 28 healthy controls. Plasma CDFA were also evaluated at the beginning, at 30 min and at the end of the dialytic session. CDFA were unchanged in CRF patients with creatinine clearance (Ccr) > 10 ml/min respect to the controls, CRF patients with Ccr < 10 ml/min showed a higher level of CDFA both in plasma and adipose tissue (p < 0.02). HD patients showed values similar to those of the control group. The lowest level of CDFA was found in HDF patients (p < 0.01 for plasma, p < 0.05 for adipose tissue versus both control and any other group). A significant relationship between plasma and adipose tissue CDFA was found in all groups. In the group of CRF patients with Ccr < 10 ml/min, females exhibited a higher level of CDFA both in plasma and adipose tissue. No significant change was found during dialytic session, independently from the membrane used. CDFA are not only primary products of lipid peroxidation, but also have a dietary origin, primarily from dairy products. Taking into account the reduced dietary intake, the increase in end-stage CRF may be due to an enhanced oxidative stress and/or to abnormalities in CDFA metabolism. Uremic patients, particularly in the predialytic stage, should be considered at risk for increased oxidative stress. HDF treatment better corrects the abnormality compared to conventional HD.


Nutrition and Cancer | 1999

An increase in vitamin a status by the feeding of conjugated linoleic acid

Sebastiano Banni; Elisabetta Angioni; Viviana Casu; Maria Paola Melis; Stefania Scrugli; Gianfranca Carta; Francesco P. Corongiu; Clement Ip

Previous research indicated that conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. The present study showed a progressive increase in retinol (vitamin A alcohol) in the liver in proportion to CLA intake in rats that were fed different levels of CLA (in increments of 0.5%) for 1 month. The escalation reached a magnitude of about fivefold over the control at 2% dietary CLA. In contrast, the increase in liver retinyl esters peaked at about twofold between 0.5% and 1% CLA. Only retinol was detected in mammary tissue; a maximal twofold increase was attained at 0.5% CLA, and no dose-response effect was evident. The above findings are discussed in relation to two important questions: 1) How does CLA raise vitamin A status in the animal? 2) Is the increase in vitamin A associated with the anticarcinogenic effect of CLA?


BioMed Research International | 2014

Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products

Maria Barbara Pisano; Silvia Viale; Stefania Conti; Maria Elisabetta Fadda; Maura Deplano; Maria Paola Melis; Monica Deiana; Sofia Cosentino

Twenty-three Lactobacillus strains of dairy origin were evaluated for some functional properties relevant to their use as probiotics. A preliminary subtractive screening based on the abilities to inhibit the growth of microbial pathogens and hydrolyze conjugated bile salts was applied, and six strains were selected for further characterization including survival under gastrointestinal environmental conditions, adhesion to gut epithelial tissue, enzymatic activity, and some safety properties. All selected strains maintained elevated cell numbers under conditions simulating passage through the human gastrointestinal tract, well comparable to the values obtained for the probiotic strain Lactobacillus rhamnosus GG, and were able to adhere to Caco-2 cells to various extents (from 3 to 20%). All strains exhibited high aminopeptidase, and absent or very low proteolytic and strong β-galactosidase activities; none was found to be haemolytic or to produce biogenic amines and all were susceptible to tetracycline, chloramphenicol, erythromycin, ampicillin, and amoxicillin/clavulanic acid. Our results indicate that the Lactobacillus strains analyzed could be considered appropriate probiotic candidates, due to resistance to GIT simulated conditions, antimicrobial activity, adhesion to Caco-2 cell-line, and absence of undesirable properties. They could be used as adjunct cultures for contributing to the quality and health related functional properties of dairy products.


Food Chemistry | 2012

Wine extracts from Sardinian grape varieties attenuate membrane oxidative damage in Caco-2 cell monolayers

Monica Deiana; D Loru; Alessandra Incani; Antonella Rosa; Angela Atzeri; Maria Paola Melis; B Cabboi; Laurent Hollecker; Maria Barbara Pinna; Francesca Argiolas; Mariano Murru; Maria Assunta Dessì

One of the most important sites of polyphenol action seems to be in the gastrointestinal system before absorption. We investigated the ability of three wine phenolic extracts, obtained from grape varieties grown in Sardinia, Cannonau (red), Vermentino and Malvasia (white), to exert an antioxidant action against tert-butyl hydroperoxide (TBH)-induced oxidative damage to Caco-2 cell monolayers as a model system of the human intestine. TBH treatment caused the disruption of epithelial integrity, measured as transepithelial electrical resistance, and markers of the peroxidation process of membrane lipids, MDA, fatty acid hydroperoxides and 7-ketocholesterol. All wine extracts were able to counteract the oxidising action of TBH and, in spite of the differences in phenolic composition, exerted a comparable activity. Our findings point out a direct antioxidant action of the wine extracts on enterocytes exposed to oxidising species and further support the opinion that total phenolic content is not essential for antioxidant activity.

Collaboration


Dive into the Maria Paola Melis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clement Ip

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge