Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Paola Serra is active.

Publication


Featured researches published by Maria Paola Serra.


Hepatology | 2011

Hepatic differentiation of amniotic epithelial cells.

Fabio Marongiu; Roberto Gramignoli; Kenneth Dorko; Toshio Miki; Aarati Ranade; Maria Paola Serra; Silvia Doratiotto; Marcella Sini; Shringi Sharma; Keitaro Mitamura; Tiffany L. Sellaro; Veysel Tahan; Kristen J. Skvorak; Ewa Ellis; Stephen F. Badylak; Julio Davila; Ronald N. Hines; Ezio Laconi; Stephen C. Strom

Hepatocyte transplantation to treat liver disease is largely limited by the availability of useful cells. Human amniotic epithelial cells (hAECs) from term placenta express surface markers and gene characteristics of embryonic stem cells and have the ability to differentiate into all three germ layers, including tissues of endodermal origin (i.e., liver). Thus, hAECs could provide a source of stem cell–derived hepatocytes for transplantation. We investigated the differentiation of hAECs in vitro and after transplantation into the livers of severe combined immunodeficient (SCID)/beige mice. Moreover, we tested the ability of rat amniotic epithelial cells (rAECs) to replicate and differentiate upon transplantation into a syngenic model of liver repopulation. In vitro results indicate that the presence of extracellular matrix proteins together with a mixture of growth factors, cytokines, and hormones are required for differentiation of hAECs into hepatocyte‐like cells. Differentiated hAECs expressed hepatocyte markers at levels comparable to those of fetal hepatocytes. They were able to metabolize ammonia, testosterone, and 17α‐hydroxyprogesterone caproate, and expressed inducible fetal cytochromes. After transplantation into the liver of retrorsine (RS)‐treated SCID/beige mice, naïve hAECs differentiated into hepatocyte‐like cells that expressed mature liver genes such as cytochromes, plasma proteins, transporters, and other hepatic enzymes at levels equal to adult liver tissue. When transplanted in a syngenic animal pretreated with RS, rAECs were able to engraft and generate a progeny of cells with morphology and protein expression typical of mature hepatocytes. Conclusion: Amniotic epithelial cells possess the ability to differentiate into cells with characteristics of functional hepatocytes both in vitro and in vivo, thus representing a useful and noncontroversial source of cells for transplantation. (HEPATOLOGY 2011;)


Journal of Chemical Neuroanatomy | 2002

Topographical localization of glial cell line-derived neurotrophic factor in the human brain stem: an immunohistochemical study of prenatal, neonatal and adult brains

Marina Del Fiacco; Marina Quartu; Maria Paola Serra; Paolo Follesa; Maria L. Lai; Alessia Bachis

As a step towards the identification of the neuronal populations responsive to glial cell line-derived neurotrophic factor (GDNF) in the human nervous system and their changes with age, this study reports on the immunohistochemical localization of the protein GDNF in the autoptic normal human brain stem of pre- and full-term newborns and adult subjects. Two different anti-GDNF polyclonal antibodies were used. Western blot analysis on homogenates of human and rat brain and recombinant human GDNF resulted in differential detection of monomeric and dimeric forms of the proteins. The ABC immunohistochemical technique on cryostat tissue sections showed an uneven distribution of GDNF-like immunoreactive nerve fibers and terminals and neuronal cell bodies. Immunoreactive elements were mainly localized to the spinal trigeminal, cuneate, solitary, vestibular, and cochlear sensory nuclei, dorsal motor nucleus of the vagus nerve, ventral grey column, hypoglossal nucleus, dorsal and ventrolateral medullary reticular formation, pontine subventricular grey and locus coeruleus, lateral regions of the rostral pontine tegmentum, tectal plate, trochlear nucleus, dorsal and median raphe nuclei, caudal and rostral linear nuclei, cuneiform nucleus, and substantia nigra. Comparison between pre- and full-term newborns and adult subjects revealed changes with age in density of positive innervation and frequency of immunoreactive perikarya. The results obtained provide detailed information on the occurrence of GDNF-like immunoreactive neurons in the human brain stem and suggest that the protein is present in a variety of neuronal systems, which subserve different functional activities, at developmental ages and in adult brains.


Lipids in Health and Disease | 2012

Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

Marina Quartu; Maria Paola Serra; Marianna Boi; Giuliano Pillolla; Tiziana Melis; Laura Poddighe; Marina Del Fiacco; Danilo Falconieri; Gianfranca Carta; Elisabetta Murru; Lina Cordeddu; Antonio Piras; Maria Collu; Sebastiano Banni

BackgroundIschemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs) and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB) congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO) in the rat frontal cortex and plasma.MethodsAdult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R). 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle) or with the vehicle alone.ResultsBCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2), as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA), and levels of palmytoylethanolamide (PEA) and oleoylethanolamide (OEA).ConclusionsAcute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury.


Hepatology | 2012

Hepatocyte senescence in vivo following preconditioning for liver repopulation

Maria Paola Serra; Fabio Marongiu; Marcella Sini; Ezio Laconi

In the retrorsine (RS)‐based model of massive liver repopulation, preexposure to this naturally occurring alkaloid is sufficient to prime normal host parenchymal cells to be slowly replaced by transplanted normal hepatocytes. The basis for this striking effect is yet to be fully elucidated. In the present studies the possible involvement of cell senescence was investigated. Fischer 344 rats were treated according to the RS‐based protocol for hepatocyte transplantation, i.e., two doses of RS, 2 weeks apart, and were killed at 4 or 8 weeks after treatment. Control groups were given saline. Expression of senescence‐associated beta‐galactosidase was greatly induced in hepatocytes exposed to RS. In addition, several other changes that have been related to cell senescence were observed: these included markers of persistent activation of a DNA damage response, an increased expression of mammalian target of rapamycin, and positive regulators of the cell cycle, together with the induction of p21 and p27 cyclin‐dependent kinase inhibitors. Furthermore, RS treatment increased levels of interleukin‐6 in the liver, consistent with the activation of a senescence‐associated secretory phenotype. Conclusion: These findings indicate that RS induces hepatocyte senescence in vivo. We propose that cell senescence and the associated secretory phenotype can contribute to the selective growth of transplanted hepatocytes in this system. (HEPATOLOGY 2012)


Stem Cells and Development | 2015

Rat-Derived Amniotic Epithelial Cells Differentiate into Mature Hepatocytes In Vivo with No Evidence of Cell Fusion

Michela Marongiu; Maria Paola Serra; Antonella Contini; Marcella Sini; Stephen C. Strom; Ezio Laconi; Fabio Marongiu

Amniotic epithelial cells (AEC) derived from human placenta represent a useful and noncontroversial source for liver-based regenerative medicine. Previous studies suggested that human- and rat-derived AEC differentiate into hepatocyte-like cells upon transplantation. In the retrorsine (RS) model of liver repopulation, clusters of donor-derived cells engrafted in the recipient liver and, importantly, showed characteristics of mature hepatocytes. The aim of the current study was to investigate the possible involvement of cell fusion in the emergence of hepatocyte clusters displaying a donor-specific phenotype. To this end, 4-week-old GFP+/DPP-IV− rats were treated with RS and then transplanted with undifferentiated AEC isolated from the placenta of DPP-IV+ pregnant rats at 16–19 days of gestational age. Results indicated that clusters of donor-derived cells were dipeptidyl peptidase type IV (DPP-IV) positive, but did not express the green fluorescent protein (GFP), suggesting that rat amniotic epithelial cells (rAEC) did not fuse within the host parenchyma, as no colocalization of the two tags was observed. Moreover, rAEC-derived clusters expressed markers of mature hepatocytes (eg, albumin, cytochrome P450), but were negative for the expression of biliary/progenitor markers (eg, epithelial cell adhesion molecule [EpCAM]) and did not express the marker of preneoplastic hepatic nodules glutathione S-transferase P (GST-P). These results extend our previous findings on the potential of AEC to differentiate into mature hepatocytes and suggest that this process can occur in the absence of cell fusion with host-derived cells. These studies support the hypothesis that amnion-derived epithelial cells can be an effective cell source for the correction of liver disease.


Journal of Hepatology | 2015

Cell-autonomous decrease in proliferative competitiveness of the aged hepatocyte

Maria Paola Serra; Fabio Marongiu; Michela Marongiu; Antonella Contini; Ezio Laconi

BACKGROUND & AIMS The regenerative potential of the liver declines with age, this might be dependent on a decrease in the intensity of the stimulus and/or an increased refractoriness of the target. In the present study, we compared the in vivo growth capacity of young and old hepatocytes transplanted into the same host. METHODS We utilized the retrorsine (RS)-based model for liver repopulation, which provides a specific and effective stimulus for transplanted hepatocytes. Rats of the dipeptidyl-peptidase type IV (DPP-IV)-deficient strain were given RS and were injected with a mix of hepatocytes isolated from either a 2-month old or an 18-month old donor. To follow the fate of transplanted cells, they were each identified through a specific tag: young hepatocytes expressed the green fluorescent protein (GFP(+)), while those from old donors were DPP-IV-positive. RESULTS At 1 month post-transplantation, DPP-IV-positive clusters (derived from old donor) were consistently smaller than those GFP(+) (young donor); the cross sectional area of clusters was decreased by 50%, while the mean volume was reduced to 1/3. Furthermore, when 2/3 partial hepatectomy (PH) was performed, the S-phase response of old hepatocyte-derived clusters was only 30-40% compared to that observed in cluster originating from young hepatocytes. No markers of cell senescence were expressed in clusters of transplanted hepatocytes. CONCLUSIONS This is the first direct evidence in vivo that hepatocytes in the aged liver express a cell-autonomous decline in their replicative capacity and in their regenerative response to PH compared to those from a young animal.


Progress in Histochemistry and Cytochemistry | 2012

Cancer as a disease of tissue pattern formation

Fabio Marongiu; Silvia Doratiotto; Marcella Sini; Maria Paola Serra; Ezio Laconi

The diagnosis of neoplastic disease still lays its foundations on the detection of altered tissue morphology. Most importantly, cancer begins, at least in many cases as a disease with altered tissue pattern formation. It is therefore rather surprising that the issue regarding the possible mechanistic role of such property in the pathogenesis of cancer has received relatively little attention so far. To be more specific, we need to ask the following question: is altered tissue pattern formation a mere bystander, with its pervasive presence along the entire carcinogenic sequence, or does it play a role in fuelling this process? Pathways related to morphogenesis and to the establishment of cell polarity will be considered for their possible mechanistic involvement in early phases of neoplastic disease. Evidences and hypotheses relating altered tissue pattern formation to the emergence of the tumor microenvironment and to neoplastic progression will be discussed.


International Journal of Radiation Biology | 2014

Hepatocyte senescence induced by radiation and partial hepatectomy in rat liver

Maria Paola Serra; Fabio Marongiu; Marcella Sini; Michela Marongiu; Antonella Contini; Hendrik A. Wolff; Margret Rave-Fränk; Petra Krause; Ezio Laconi; Sarah Koenig

Abstract Purpose: Exposure to radiation primes the liver for extensive replacement of the resident parenchymal cells by transplanted hepatocytes. The mechanisms underlying this repopulation remain to be clarified. In these studies, we examined the possible occurrence of cell senescence in vivo following radiation-associated preconditioning of the host liver. Materials and methods: Fischer 344 rats underwent external-beam, computed-tomography-based partial liver irradiation. A single dose of 25 Gy was delivered to the right liver lobes (40% of liver mass). An additional group of animals received a 1/3 partial hepatectomy (removal of the left anterior lobe) four days after irradiation. Non-irradiated groups served as controls. All rats were sacrificed four weeks after the initial treatment. Results: The irradiated livers displayed several markers of cell senescence, including expression of senescence-associated-β-galactosidase (SA-β-gal), increase in cell size, and up-regulation of cyclin-dependent kinase inhibitors (CDK-I) p16 and p21. Furthermore, quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis revealed activation of the senescence-associated secretory phenotype (SASP), including the cytokines interleukin 6 (IL6) and 1α (IL1α). The senescence-related changes were more prominent in rats undergoing partial hepatectomy (PH) following irradiation (IR). Conclusions: We conclude that priming with radiation for liver repopulation results in the induction of cell senescence and the up-regulation of a senescence-associated secretory phenotype. The latter can contribute to the extensive growth of transplanted cells in this system.


PLOS ONE | 2017

KIR and their HLA Class I ligands: Two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation

Roberto Littera; Gianbenedetto Piredda; Davide Argiolas; Sara Lai; Elena Congeddu; Paola Ragatzu; Maurizio Melis; Elisabetta Carta; Maria Benigna Michittu; Donatella Valentini; L Cappai; Rita Porcella; F Alba; Maria Paola Serra; Valentina Loi; R Maddi; Sandro Orru; Giorgio La Nasa; Giovanni Caocci; Roberto Cusano; M Arras; Mauro Frongia; Antonello Pani; Carlo Carcassi

Background Kidney transplantation is a life-saving treatment for patients with end-stage renal disease. However, despite progress in surgical techniques and patient management, immunological rejection continues to have a negative impact on graft function and overall survival. Incompatibility between donors and recipients for human leukocyte antigens (HLA) of the major histocompatibility complex (MHC) generates a series of complex cellular and humoral immune response mechanisms that are largely responsible for rejection and loss of graft function. Within this context, a growing amount of evidence shows that alloreactive natural killer (NK) cells play a critical role in the immune response mechanisms elicited by the allograft. Killer immunoglobulin-like receptors (KIRs) are prominent mediators of NK cell alloreactivity. Methods and findings A cohort of 174 first cadaveric kidney allograft recipients and their donors were selected from a total cohort of 657 transplanted patients for retrospective immunogenetic analyses. Patients with HLA Class II mismatches were excluded. HLA Class I allele frequencies were compared among patients with chronic rejection, patients with stable graft function and a group of 2388 healthy controls. Activating and inhibitory KIR gene frequencies, KIR haplotypes, KIR-HLA ligand matches/mismatches and combinations of recipient KIRs and donor HLA Class I ligands were compared among patients with and without chronic rejection and a group of 221 healthy controls. Patients transplanted from donors homozygous for HLA-C1 antigens had a significantly higher risk for chronic rejection than patients transplanted from donors homozygous or heterozygous for HLA-C2 antigens or with epitopes belonging to the HLA-Bw4 ligand group. The Kaplan-Meier curves obtained by dividing the patients into 3 groups according to the presence or absence of one or both of the combinations of recipient KIRs and donor HLA ligands (rKIR2DL1/dHLA-C2 and rKIR3DL1/dHLA-Bw4) showed a significantly higher cumulative incidence of chronic rejection in the group of patients completely lacking these functional units. These patients showed a progressively stronger decline in modification of diet in renal disease-estimated glomerular filtration rate. Conclusions KIR genotyping should be performed at the time of enrolment of patients on the waiting list for organ transplantation. In our study, a significantly higher risk of chronic rejection after kidney transplantation was observed when recipient (r) and donor (d) pairs completely lacked the two functional rKIR-dHLA ligand combinations rKIR2DL1/dHLA-C2 and rKIR3DL1/dHLA-Bw4. This immunogenetic profile corresponds to low levels of NK cell inhibition. Therefore, patients with this high risk profile could benefit from immunosuppressive therapy aimed at reducing NK-cell cytotoxicity.


Aging (Albany NY) | 2016

Aging promotes neoplastic disease through effects on the tissue microenvironment

Fabio Marongiu; Maria Paola Serra; Silvia Doratiotto; Marcella Sini; Maura Fanti; Erika Cadoni; Monica Serra; Ezio Laconi

A better understanding of the complex relationship between aging and cancer will provide important tools for the prevention and treatment of neoplasia. In these studies, the hypothesis was tested that aging may fuel carcinogenesis via alterations imposed in the tissue microenvironment. Preneoplastic hepatocytes isolated from liver nodules were orthotopically injected into either young or old syngeneic rats and their fate was followed over time using the dipeptidyl-peptidase type IV (DPPIV) system to track donor-derived-cells. At 3 months post-Tx, the mean size of donor-derived clusters was 11±3 cells in young vs. 42±8 in old recipients. At 8 months post-Tx, no visible lesion were detected in any of 21 young recipients, while 17/18 animals transplanted at old age displayed hepatic nodules, including 7 large tumors. All tumors expressed the DPPIV marker enzyme, indicating that they originated from transplanted cells. Expression of senescence-associated β-galactosidase was common in liver of 18-month old animals, while it was a rare finding in young controls. Finally, both mRNA and IL6 protein were found to be increased in the liver of aged rats compared to young controls. These results are interpreted to indicate that the microenvironment of the aged liver promotes the growth of pre-neoplastic hepatocytes.

Collaboration


Dive into the Maria Paola Serra's collaboration.

Top Co-Authors

Avatar

Ezio Laconi

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R Maddi

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F Alba

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar

Sara Lai

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge