Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Pennuto is active.

Publication


Featured researches published by Maria Pennuto.


Neuron | 2008

Ablation of the UPR-Mediator CHOP Restores Motor Function and Reduces Demyelination in Charcot-Marie-Tooth 1B Mice

Maria Pennuto; Elisa Tinelli; Mc Malaguti; Ubaldo Del Carro; Maurizio D'Antonio; David Ron; Angelo Quattrini; M. Laura Feltri; Lawrence Wrabetz

Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), including expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination 2-fold. This indicates that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. S63del mice also provide an opportunity to explore how cells can dysfunction yet survive in prolonged ER stress-important for neurodegeneration related to misfolded proteins.


Neuron | 2010

Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy

Natalia B. Nedelsky; Maria Pennuto; Rebecca B. Smith; Isabella Palazzolo; Jennifer C. Moore; Zhiping Nie; Geoffrey Neale; J. Paul Taylor

Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by expansion of a polyglutamine tract in the androgen receptor (AR). This mutation confers toxic function to AR through unknown mechanisms. Mutant AR toxicity requires binding of its hormone ligand, suggesting that pathogenesis involves ligand-induced changes in AR. However, whether toxicity is mediated by native AR function or a novel AR function is unknown. We systematically investigated events downstream of ligand-dependent AR activation in a Drosophila model of SBMA. We show that nuclear translocation of AR is necessary, but not sufficient, for toxicity and that DNA binding by AR is necessary for toxicity. Mutagenesis studies demonstrated that a functional AF-2 domain is essential for toxicity, a finding corroborated by a genetic screen that identified AF-2 interactors as dominant modifiers of degeneration. These findings indicate that SBMA pathogenesis is mediated by misappropriation of native protein function, a mechanism that may apply broadly to polyglutamine diseases.


Human Molecular Genetics | 2009

Mitochondrial abnormalities in spinal and bulbar muscular atrophy

Srikanth Ranganathan; George G. Harmison; Kristin Meyertholen; Maria Pennuto; Barrington G. Burnett; Kenneth H. Fischbeck

Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with depolarization of the mitochondrial membrane. This was mitigated by cyclosporine A, which inhibits opening of the mitochondrial permeability transition pore. We also found that the expression of the mutant protein in the presence of ligand results in an elevated level of reactive oxygen species, which is blocked by the treatment with the antioxidants co-enzyme Q10 and idebenone. The mutant protein in MN-1 cells also resulted in increased Bax, caspase 9 and caspase 3. We assessed the effects of mutant AR on the transcription of mitochondrial proteins and found altered expression of the peroxisome proliferator-activated receptor γ coactivator 1 and the mitochondrial specific antioxidant superoxide dismutase-2 in affected tissues of SBMA knock-in mice. In addition, we found that the AR associates with mitochondria in cultured cells. This study thus provides evidence for mitochondrial dysfunction in SBMA cell and animal models, either through indirect effects on the transcription of nuclear-encoded mitochondrial genes or through direct effects of the mutant protein on mitochondria or both. These findings indicate possible benefit from mitochondrial therapy for SBMA.


The Journal of Neuroscience | 2006

Different Intracellular Pathomechanisms Produce Diverse Myelin Protein Zero Neuropathies in Transgenic Mice

Lawrence Wrabetz; Maurizio D'Antonio; Maria Pennuto; Dati G; Elisa Tinelli; Fratta P; Stefano C. Previtali; Imperiale D; Jürgen Zielasek; Klaus V. Toyka; Robin L. Avila; Daniel A. Kirschner; Albee Messing; Maria Laura Feltri; Angelo Quattrini

Missense mutations in 22 genes account for one-quarter of Charcot–Marie–Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin.


Journal of Cell Science | 2004

Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles

Michela Rigoni; Giampietro Schiavo; Anne E. Weston; Paola Caccin; Federica Allegrini; Maria Pennuto; Flavia Valtorta; Cesare Montecucco; Ornella Rossetto

The mechanisms of action of four snake presynaptic phospholipase A2 neurotoxins were investigated in cultured neurons isolated from various parts of the rat brain. Strikingly, physiological concentrations of notexin, β-bungarotoxin, taipoxin or textilotoxin induced a dose-dependent formation of discrete bulges at various sites of neuronal projections. Neuronal bulging was paralleled by the redistribution of the two synaptic vesicle markers synaptophysin I (SypI) and vesicle-attached membrane protein 2 (VAMP2) to the bulges, and by the exposure of the luminal domain of synaptotagmin on the cell surface. These neurotoxins induced glutamate release from cultured neurons similarly to the known evoked release of acetylcholine from neuromuscular junctions. In addition, partial fragmentation of F-actin and neurofilaments was observed in neurons, but not in astrocytes. These findings indicate that these snake presynaptic neurotoxins act with by same mechanism and that the observed phenotype results from the fusion of synaptic vesicles with the plasma membrane not balanced by an adequate membrane retrieval. These changes closely resemble those occurring at neuromuscular junctions of intoxicated animals and fully qualify these primary neuronal cultures as pertinent models for studying the molecular mode of action of these neurotoxins.


Molecular Medicine | 2012

Insulinlike Growth Factor (IGF)-1 Administration Ameliorates Disease Manifestations in a Mouse Model of Spinal and Bulbar Muscular Atrophy

Carlo Rinaldi; Laura C. Bott; Ke-lian Chen; George G. Harmison; Masahisa Katsuno; Gen Sobue; Maria Pennuto; Kenneth H. Fischbeck

Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.


PLOS ONE | 2013

Protein Arginine Methyltransferase 1 and 8 Interact with FUS to Modify Its Sub-Cellular Distribution and Toxicity In Vitro and In Vivo

Chiara Scaramuzzino; John Monaghan; Carmelo Milioto; Nicholas A. Lanson; Astha Maltare; Tanya Aggarwal; Ian Casci; Frank O. Fackelmayer; Maria Pennuto; Udai Bhan Pandey

Amyotrophic lateral sclerosis (ALS) is a late onset and progressive motor neuron disease. Mutations in the gene coding for fused in sarcoma/translocated in liposarcoma (FUS) are responsible for some cases of both familial and sporadic forms of ALS. The mechanism through which mutations of FUS result in motor neuron degeneration and loss is not known. FUS belongs to the family of TET proteins, which are regulated at the post-translational level by arginine methylation. Here, we investigated the impact of arginine methylation in the pathogenesis of FUS-related ALS. We found that wild type FUS (FUS-WT) specifically interacts with protein arginine methyltransferases 1 and 8 (PRMT1 and PRMT8) and undergoes asymmetric dimethylation in cultured cells. ALS-causing FUS mutants retained the ability to interact with both PRMT1 and PRMT8 and undergo asymmetric dimethylation similar to FUS-WT. Importantly, PRMT1 and PRMT8 localized to mutant FUS-positive inclusion bodies. Pharmacologic inhibition of PRMT1 and PRMT8 activity reduced both the nuclear and cytoplasmic accumulation of FUS-WT and ALS-associated FUS mutants in motor neuron-derived cells and in cells obtained from an ALS patient carrying the R518G mutation. Genetic ablation of the fly homologue of human PRMT1 (DART1) exacerbated the neurodegeneration induced by overexpression of FUS-WT and R521H FUS mutant in a Drosophila model of FUS-related ALS. These results support a role for arginine methylation in the pathogenesis of FUS-related ALS.


Frontiers in Neuroendocrinology | 2011

Neurotoxic effects of androgens in spinal and bulbar muscular atrophy.

Sara Parodi; Maria Pennuto

Expansion of polyglutamine tracts in nine different genes causes selective neuronal degeneration through unknown mechanisms. Expansion of polyglutamine in the androgen receptor is responsible for spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder characterized by the loss of lower motor neurons in the brainstem and spinal cord. A unique feature of SBMA in the family of polyglutamine diseases is sex specificity. SBMA fully manifests only in males. SBMA is a disease triggered by the binding of polyglutamine androgen receptor to its natural ligand testosterone. Recent evidence has emerged showing that the expanded polyglutamine tract itself is not the only determinant of disease pathogenesis. There is evidence that both the native structure and function of the disease protein strongly influence the pathogenicity of mutant protein. Here, we review recent progress in the understanding of disease pathogenesis and advancements towards development of potential therapeutic strategies for SBMA.


Frontiers in Cellular Neuroscience | 2013

Differential autophagy power in the spinal cord and muscle of transgenic ALS mice

Valeria Crippa; Alessandra Boncoraglio; Mariarita Galbiati; Tanya Aggarwal; Paola Rusmini; Elisa Giorgetti; Riccardo Cristofani; Serena Carra; Maria Pennuto; Angelo Poletti

Amyotrophic lateral sclerosis (ALS) is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1) ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular chaperone-mediated protein quality control (PQC), and to a reduced mutSOD1 clearance from motoneurons. Skeletal muscle cells are also sensitive to mutSOD1 toxicity, but no mutSOD1 aggregates are formed in these cells, that might better manage mutSOD1 than motoneurons. Thus, we analyzed in spinal cord and in muscle of transgenic (tg) G93A-SOD1 mice at presymptomatic (PS, 8 weeks) and symptomatic (S, 16 weeks) stages, and in age-matched control mice, whether mutSOD1 differentially modulates relevant PQC players, such as HSPB8, BAG3, and BAG1. Possible sex differences were also considered. No changes of HSPB8, BAG3, and BAG1 at PS stage (8 weeks) were seen in all tissues examined in tg G93A-SOD1 and control mice. At S stage (16 weeks), HSPB8 dramatically increased in skeletal muscle of tg G93A-SOD1 mice, while a minor increase occurred in spinal cord of male, but not female tg G93A-SOD1 mice. BAG3 expression increased both in muscle and spinal cord of tg G93A-SOD1 mice at S stage, BAG1 expression increased only in muscle of the same mice. Since, HSPB8-BAG3 complex assists mutSOD1 autophagic removal, we analyzed two well-known autophagic markers, LC3 and p62. Both LC3 and p62 mRNAs were significantly up-regulated in skeletal muscle of tg G93A-SOD1 mice at S stage (16 weeks). This suggests that mutSOD1 expression induces a robust autophagic response specifically in muscle. Together these results demonstrate that, in muscle mutSOD1-induced autophagic response is much higher than in spinal cord. In addition, if mutSOD1 exerts toxicity in muscle, this may not be mediated by misfolded proteins accumulation. It remains unclear whether in muscle mutSOD1 toxicity is related to aberrant autophagy activation.


Neuron | 2015

Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy.

Chiara Scaramuzzino; Ian Casci; Sara Parodi; Patricia Lievens; Maria J. Polanco; Carmelo Milioto; Mathilde Chivet; John Monaghan; Ashutosh Mishra; Nisha M. Badders; Tanya Aggarwal; Christopher Grunseich; Manuela Basso; Frank O. Fackelmayer; J. Paul Taylor; Udai Bhan Pandey; Maria Pennuto

Summary Polyglutamine expansion in androgen receptor (AR) is responsible for spinobulbar muscular atrophy (SBMA) that leads to selective loss of lower motor neurons. Using SBMA as a model, we explored the relationship between protein structure/function and neurodegeneration in polyglutamine diseases. We show here that protein arginine methyltransferase 6 (PRMT6) is a specific co-activator of normal and mutant AR and that the interaction of PRMT6 with AR is significantly enhanced in the AR mutant. AR and PRMT6 interaction occurs through the PRMT6 steroid receptor interaction motif, LXXLL, and the AR activating function 2 surface. AR transactivation requires PRMT6 catalytic activity and involves methylation of arginine residues at Akt consensus site motifs, which is mutually exclusive with serine phosphorylation by Akt. The enhanced interaction of PRMT6 and mutant AR leads to neurodegeneration in cell and fly models of SBMA. These findings demonstrate a direct role of arginine methylation in polyglutamine disease pathogenesis.

Collaboration


Dive into the Maria Pennuto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Milioto

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Flavia Valtorta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Sara Parodi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Fischbeck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Benfenati

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge