Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Pia Rastaldi is active.

Publication


Featured researches published by Maria Pia Rastaldi.


Nature Medicine | 2011

Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis

Changli Wei; Shafic El Hindi; Jing Li; Alessia Fornoni; Nelson Goes; Junichiro Sageshima; Dony Maiguel; S. Ananth Karumanchi; Hui Kim Yap; Moin A. Saleem; Qing-Yin Zhang; Boris Nikolic; Abanti Chaudhuri; Pirouz Daftarian; Eduardo Salido; Armando Torres; Moro O. Salifu; Minnie M. Sarwal; Franz Schaefer; Christian Morath; Vedat Schwenger; Martin Zeier; Vineet Gupta; David Roth; Maria Pia Rastaldi; George W. Burke; Phillip Ruiz; Jochen Reiser

Focal segmental glomerulosclerosis (FSGS) is a cause of proteinuric kidney disease, compromising both native and transplanted kidneys. Treatment is limited because of a complex pathogenesis, including unknown serum factors. Here we report that serum soluble urokinase receptor (suPAR) is elevated in two-thirds of subjects with primary FSGS, but not in people with other glomerular diseases. We further find that a higher concentration of suPAR before transplantation underlies an increased risk for recurrence of FSGS after transplantation. Using three mouse models, we explore the effects of suPAR on kidney function and morphology. We show that circulating suPAR activates podocyte β3 integrin in both native and grafted kidneys, causing foot process effacement, proteinuria and FSGS-like glomerulopathy. Our findings suggest that the renal disease only develops when suPAR sufficiently activates podocyte β3 integrin. Thus, the disease can be abrogated by lowering serum suPAR concentrations through plasmapheresis, or by interfering with the suPAR–β3 integrin interaction through antibodies and small molecules targeting either uPAR or β3 integrin. Our study identifies serum suPAR as a circulating factor that may cause FSGS.


Journal of Clinical Investigation | 2004

Induction of B7-1 in podocytes is associated with nephrotic syndrome

Jochen Reiser; Gero von Gersdorff; Martin Loos; Jun Oh; Katsuhiko Asanuma; Laura Giardino; Maria Pia Rastaldi; Novella Calvaresi; Haruko Watanabe; Karin Schwarz; Christian Faul; Matthias Kretzler; Anne Davidson; Hikaru Sugimoto; Raghu Kalluri; Arlene H. Sharpe; Jordan A. Kreidberg; Peter Mundel

Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin-induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.


Nature Medicine | 2008

Modification of kidney barrier function by the urokinase receptor

Changli Wei; Clemens C. Möller; Mehmet M. Altintas; Jing Li; Karin Schwarz; Serena Zacchigna; Liang Xie; Anna Henger; Holger Schmid; Maria Pia Rastaldi; Peter J. Cowan; Matthias Kretzler; Roberto Parrilla; Moise Bendayan; Vineet Gupta; Boris Nikolic; Raghu Kalluri; Peter Carmeliet; Peter Mundel; Jonche Reiser

Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.


Journal of Clinical Investigation | 2011

mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.

Ken Inoki; Hiroyuki Mori; Junying Wang; Tsukasa Suzuki; Sung Ki Hong; Sei Yoshida; Simone M. Blattner; Tsuneo Ikenoue; Markus A. Rüegg; Michael N. Hall; David J. Kwiatkowski; Maria Pia Rastaldi; Tobias B. Huber; Matthias Kretzler; Lawrence B. Holzman; Roger C. Wiggins; Kun-Liang Guan

Diabetic nephropathy (DN) is among the most lethal complications that occur in type 1 and type 2 diabetics. Podocyte dysfunction is postulated to be a critical event associated with proteinuria and glomerulosclerosis in glomerular diseases including DN. However, molecular mechanisms of podocyte dysfunction in the development of DN are not well understood. Here we have shown that activity of mTOR complex 1 (mTORC1), a kinase that senses nutrient availability, was enhanced in the podocytes of diabetic animals. Further, podocyte-specific mTORC1 activation induced by ablation of an upstream negative regulator (PcKOTsc1) recapitulated many DN features, including podocyte loss, glomerular basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and adult mice. Abnormal mTORC1 activation caused mislocalization of slit diaphragm proteins and induced an epithelial-mesenchymal transition-like phenotypic switch with enhanced ER stress in podocytes. Conversely, reduction of ER stress with a chemical chaperone significantly protected against both the podocyte phenotypic switch and podocyte loss in PcKOTsc1 mice. Finally, genetic reduction of podocyte-specific mTORC1 in diabetic animals suppressed the development of DN. These results indicate that mTORC1 activation in podocytes is a critical event in inducing DN and suggest that reduction of podocyte mTORC1 activity is a potential therapeutic strategy to prevent DN.


Journal of Clinical Investigation | 2011

Role of mTOR in podocyte function and diabetic nephropathy in humans and mice

Markus Gödel; Björn Hartleben; Nadja Herbach; Shuya Liu; Stefan Zschiedrich; Shun Lu; Andrea Debreczeni-Mór; Maja T. Lindenmeyer; Maria Pia Rastaldi; Götz Hartleben; Thorsten Wiech; Alessia Fornoni; Robert G. Nelson; Matthias Kretzler; Rüdiger Wanke; Hermann Pavenstädt; Dontscho Kerjaschki; Clemens D. Cohen; Michael N. Hall; Markus A. Rüegg; Ken Inoki; Gerd Walz; Tobias B. Huber

Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy.


Science Translational Medicine | 2011

Rituximab Targets Podocytes in Recurrent Focal Segmental Glomerulosclerosis

Alessia Fornoni; Junichiro Sageshima; Changli Wei; Sandra Merscher-Gomez; Robier Aguillon-Prada; Alexandra Jauregui; Jing Li; Adela Mattiazzi; Gaetano Ciancio; Linda Chen; Gaston Zilleruelo; Carolyn Abitbol; Jayanthi Chandar; Wacheree Seeherunvong; Camillo Ricordi; Masami Ikehata; Maria Pia Rastaldi; Jochen Reiser; George W. Burke

Rituximab treatment in high-risk patients with focal segmental glomerulosclerosis directly affects podocyte function and is linked to reduced incidence of recurrent proteinuria after kidney transplantation. Rituximab Prods Podocytes to Action Rituximab is a monoclonal antibody against CD20, a protein located on the surface of B cells. It is typically used to treat certain cancers and autoimmune disorders, but has also treated kidney conditions, including focal segmental glomerulosclerosis (FSGS)—a disorder that can affect both pediatric and adult patients. Recurrent FSGS is a problem for 30 to 40% of patients who have undergone kidney transplantation, and can be characterized by progression to end-stage renal disease and recurrence of proteinuria after transplant. Despite the ability of rituximab to treat FSGS, it has been unclear exactly how this drug achieves success in some patients, but not others. Fornoni and colleagues hypothesized that rituximab operates in a B cell–independent manner, targeting instead specific kidney cells called podocytes. To test this hypothesis, Fornoni et al. studied 41 patients at high risk for FSGS: 14 historical control patients who were not treated with rituximab and 27 patients who received rituximab at the time of kidney transplant. They found fewer podocytes with sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b) protein in biopsies from patients who later developed recurrent FSGS. The authors had also collected serum from all patients before transplant and then later treated normal human podocytes in culture with the sera. Serum from patients who would later develop recurrent FSGS caused a decrease in both SMPDL-3b protein and acid sphingomyelinase activity. This phenomenon was prevented by rituximab. The FSGS serum from patients also disrupted the actin cytoskeleton of cultured podocytes, but pretreatment with rituximab, or even overexpression of SMPDL-3b protein, partially prevented this phenotype. Together, these data suggest that modulation of sphingolipid-related proteins plays a role in the pathogenesis of recurrent FSGS and, moreover, that these proteins and enzymes might be targets of rituximab treatment. With the mechanism solved, rituximab may represent a new therapeutic strategy to prevent recurrent proteinuria after kidney transplantation. Here’s to happy and healthy kidneys! Focal segmental glomerulosclerosis (FSGS) is a glomerular disease characterized by proteinuria, progression to end-stage renal disease, and recurrence of proteinuria after kidney transplantation in about one-third of patients. It has been suggested that rituximab might treat recurrent FSGS through an unknown mechanism. Rituximab not only recognizes CD20 on B lymphocytes, but might also bind sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b) protein and regulate acid sphingomyelinase (ASMase) activity. We hypothesized that rituximab prevents recurrent FSGS and preserves podocyte SMPDL-3b expression. We studied 41 patients at high risk for recurrent FSGS, 27 of whom were treated with rituximab at time of kidney transplant. SMPDL-3b protein, ASMase activity, and cytoskeleton remodeling were studied in cultured normal human podocytes that had been exposed to patient sera with or without rituximab. Rituximab treatment was associated with lower incidence of posttransplant proteinuria and stabilization of glomerular filtration rate. The number of SMPDL-3b+ podocytes in postreperfusion biopsies was reduced in patients who developed recurrent FSGS. Rituximab partially prevented SMPDL-3b and ASMase down-regulation that was observed in podocytes treated with the sera of patients with recurrent FSGS. Overexpression of SMPDL-3b or treatment with rituximab was able to prevent disruption of the actin cytoskeleton and podocyte apoptosis induced by patient sera. This effect was diminished in cultured podocytes where SMPDL-3b was silenced. Our study suggests that treatment of high-risk patients with rituximab at time of kidney transplant might prevent recurrent FSGS by modulating podocyte function in an SMPDL-3b–dependent manner.


Journal of The American Society of Nephrology | 2006

Glomerular Activation of the Lectin Pathway of Complement in IgA Nephropathy Is Associated with More Severe Renal Disease

Anja Roos; Maria Pia Rastaldi; Novella Calvaresi; Beatrijs Oortwijn; Nicole Schlagwein; Daniëlle J.van Gijlswijk-Janssen; Gregory L. Stahl; Misao Matsushita; Teizo Fujita; Cees van Kooten; Mohamed R. Daha

IgA nephropathy (IgAN) is characterized by glomerular co-deposition of IgA and complement components. Earlier studies showed that IgA activates the alternative pathway of complement, whereas more recent data also indicate activation of the lectin pathway. The lectin pathway can be activated by binding of mannose-binding lectin (MBL) and ficolins to carbohydrate ligands, followed by activation of MBL-associated serine proteases and C4. This study examined the potential role of the lectin pathway in IgAN. Renal biopsies of patients with IgAN (n=60) showed mesangial deposition of IgA1 but not IgA2. Glomerular deposition of MBL was observed in 15 (25%) of 60 cases with IgAN and showed a mesangial pattern. All MBL-positive case, but none of the MBL-negative cases showed glomerular co-deposition of L-ficolin, MBL-associated serine proteases, and C4d. Glomerular deposition of MBL and L-ficolin was associated with more pronounced histologic damage, as evidenced by increased mesangial proliferation, extracapillary proliferation, glomerular sclerosis, and interstitial infiltration, as well as with significantly more proteinuria. Patients who had IgAN with or without glomerular MBL deposition did not show significant differences in serum levels of MBL, L-ficolin, or IgA or in the size distribution of circulating IgA. Furthermore, in vitro experiments showed clear binding of MBL to polymeric but not monomeric patient IgA, without a significant difference between both groups. Together, these findings strongly point to a role for the lectin pathway of complement in glomerular complement activation in IgAN and suggest a contribution for both MBL and L-ficolin in the progression of the disease.


Journal of The American Society of Nephrology | 2007

Induction of TRPC6 Channel in Acquired Forms of Proteinuric Kidney Disease

Clemens C. Möller; Changli Wei; Mehmet M. Altintas; Jing Li; Anna Greka; Takamoto Ohse; Jeffrey W. Pippin; Maria Pia Rastaldi; Stefan Wawersik; Susan C. Schiavi; Anna Henger; Matthias Kretzler; Stuart J. Shankland; Jochen Reiser

Injury to podocytes and their slit diaphragms typically leads to marked proteinuria. Mutations in the TRPC6 gene that codes for a slit diaphragm-associated, cation-permeable ion channel have been shown recently to co-segregate with hereditary forms of progressive kidney failure. Herein is shown that induced expression of wild-type TRPC6 is a common feature of human proteinuric kidney diseases, with highest induction observed in membranous nephropathy. Cultured podocytes that are exposed to complement upregulate TRPC6 protein. Stimulation of receptor-operated channels in puromycin aminonucleoside-treated podocytes leads to increased calcium influx in a time- and dosage-dependent manner. Mechanistically, it is shown that TRPC6 is functionally connected to the podocyte actin cytoskeleton, which is rearranged upon overexpression of TRPC6. Transient in vivo gene delivery of TRPC6 into mice leads to expression of TRPC6 protein at the slit diaphragm and causes proteinuria. These studies suggest the involvement of TRPC6 in the pathology of nongenetic forms of proteinuric disease.


Journal of The American Society of Nephrology | 2007

Interstitial Vascular Rarefaction and Reduced VEGF-A Expression in Human Diabetic Nephropathy

Maja T. Lindenmeyer; Matthias Kretzler; Anissa Boucherot; Silvia Berra; Yoshinari Yasuda; Anna Henger; Felix Eichinger; Stefanie Gaiser; Holger Schmid; Maria Pia Rastaldi; Robert W. Schrier; Detlef Schlöndorff; Clemens D. Cohen

Diabetic nephropathy (DN) is a frequent complication in patients with diabetes. Although the majority of DN models and human studies have focused on glomeruli, tubulointerstitial damage is a major feature of DN and an important predictor of renal dysfunction. This study sought to investigate molecular markers of pathogenic pathways in the renal interstitium of patients with DN. Microdissected tubulointerstitial compartments from biopsies with established DN and control kidneys were subjected to expression profiling. Analysis of candidate genes, potentially involved in DN on the basis of common hypotheses, identified 49 genes with significantly altered expression levels in established DN in comparison with controls. In contrast to some rodent models, the growth factors vascular endothelial growth factor A (VEGF-A) and epidermal growth factor (EGF) showed a decrease in mRNA expression in DN. This was validated on an independent cohort of patients with DN by real-time reverse transcriptase-PCR. Immunohistochemical staining for VEGF-A and EGF also showed a reduced expression in DN. The decrease of renal VEGF-A expression was associated with a reduction in peritubular capillary densities shown by platelet-endothelial cell adhesion molecule-1/CD31 staining. Furthermore, a significant inverse correlation between VEGF-A and proteinuria, as well as EGF and proteinuria, and a positive correlation between VEGF-A and hypoxia-inducible factor-1alpha mRNA was found. Thus, in human DN, a decrease of VEGF-A, rather than the reported increase as described in some rodent models, may contribute to the progressive disease. These findings and the questions about rodent models in DN raise a note of caution regarding the proposal to inhibit VEGF-A to prevent progression of DN.


Diabetes | 2009

Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy

Céline C. Berthier; Hongyu Zhang; MaryLee Schin; Anna Henger; Robert G. Nelson; Berne Yee; Anissa Boucherot; Matthias A. Neusser; Clemens D. Cohen; Christin Carter-Su; Lawrence S. Argetsinger; Maria Pia Rastaldi; Frank C. Brosius; Matthias Kretzler

OBJECTIVE—Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure. RESEARCH DESIGN AND METHODS—Kidney biopsies were obtained from 74 patients (control subjects, early and progressive type 2 diabetic nephropathy). Glomerular and tubulointerstitial mRNAs were microarrayed, followed by bioinformatics analyses. Gene expression changes were confirmed by real-time RT-PCR and immunohistological staining. Samples from db/db C57BLKS and streptozotocin-induced DBA/2J mice, commonly studied murine models of diabetic nephropathy, were analyzed. RESULTS—In human glomeruli and tubulointerstitial samples, the Janus kinase (Jak)-signal transducer and activator of transcription (Stat) pathway was highly and significantly regulated. Jak-1, -2, and -3 as well as Stat-1 and -3 were expressed at higher levels in patients with diabetic nephropathy than in control subjects. The estimated glomerular filtration rate significantly correlated with tubulointerstitial Jak-1, -2, and -3 and Stat-1 expression (R2 = 0.30–0.44). Immunohistochemistry found strong Jak-2 staining in glomerular and tubulointerstitial compartments in diabetic nephropathy compared with control subjects. In contrast, there was little or no increase in expression of Jak/Stat genes in the db/db C57BLKS or diabetic DBA/2J mice. CONCLUSIONS—These data suggest a direct relationship between tubulointerstitial Jak/Stat expression and progression of kidney failure in patients with type 2 diabetic nephropathy and distinguish progressive human diabetic nephropathy from nonprogressive murine diabetic nephropathy.

Collaboration


Dive into the Maria Pia Rastaldi's collaboration.

Top Co-Authors

Avatar

Franco Ferrario

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Masami Ikehata

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Piergiorgio Messa

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Corbelli

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Deborah Mattinzoli

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Min Li

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Silvia Armelloni

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Laura Giardino

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge