Maria R. Amezaga
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria R. Amezaga.
Environmental Health Perspectives | 2009
Michelle Bellingham; Paul A. Fowler; Maria R. Amezaga; Stewart M. Rhind; Corrine Cotinot; Beatrice Mandon-Pepin; Richard M. Sharpe; Neil Pl Evans
Background Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to “real-life,” environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. Objectives We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein–coupled receptor 54) system. Methods KiSS-1, GPR54, and ERα (estrogen receptor α) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHβ (luteinizing hormone β) and ERα in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. Results Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHβ and ERα in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. Conclusions This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.
Molecular Human Reproduction | 2008
Paul A. Fowler; Natalie J. Dorà; Helen McFerran; Maria R. Amezaga; David Miller; Richard G. Lea; Phillip Cash; Alan S. McNeilly; Neil P. Evans; Corinne Cotinot; Richard M. Sharpe; Stewart M. Rhind
Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome.
Journal of Clinical Microbiology | 2002
Maria R. Amezaga; Philip E. Carter; Phillip Cash; Hamish McKenzie
ABSTRACT Erythromycin-resistant isolates of Streptococcus pneumoniae from blood cultures and noninvasive sites were studied over a 3-year period. The prevalence of erythromycin resistance was 11.9% (19 of 160) in blood culture isolates but 4.2% (60 of 1,435) in noninvasive-site isolates. Sixty-two of the 79 resistant isolates were available for study. The M phenotype was responsible for 76% (47 of 62) of resistance, largely due to a serotype 14 clone, characterized by multilocus sequence typing as ST9, which accounted for 79% (37 of 47) of M phenotype resistance. The ST9 clone was 4.8 times more common in blood than in noninvasive sites. All M phenotype isolates were PCR positive for mef(A), but sequencing revealed that the ST9 clone possessed the mef(A) sequence commonly associated with Streptococcus pyogenes. All M phenotype isolates with this mef(A) sequence also had sequences consistent with the presence of the Tn1207.1 genetic element inserted in the celB gene. In contrast, isolates with the mef(E) sequence normally associated with S. pneumoniae contained sequences consistent with the presence of the mega insertion element. All MLSB isolates carried erm(B), and two isolates carried both erm(B) and mef(E). Fourteen of the 15 MLSB isolates were tetracycline resistant and contained tet(M). However, six M phenotype isolates of serotypes 19 (two isolates) and 23 (four isolates) were also tetracycline resistant and contained tet(M). MICs for isolates with the mef(A) sequence were significantly higher than MICs for isolates with the mef(E) sequence (P < 0.001). Thus, the ST9 clone of S. pneumoniae is a significant cause of invasive pneumococcal disease in northeast Scotland and is the single most important contributor to M phenotype erythromycin resistance.
Journal of Neuroendocrinology | 2010
Michelle Bellingham; Paul A. Fowler; Maria R. Amezaga; Christine Margaret Whitelaw; Stewart M. Rhind; Corinne Cotinot; Beatrice Mandon-Pepin; Richard M. Sharpe; Neil P. Evans
Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to ‘real life’, environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin‐releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real‐world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long‐term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function.
International Journal of Andrology | 2012
Michelle Bellingham; Chris McKinnell; Paul A. Fowler; Maria R. Amezaga; Zulin Zhang; Stewart M. Rhind; Corinne Cotinot; Beatrice Mandon-Pepin; Neil P. Evans; Richard M. Sharpe
Exposure to ubiquitous, environmental chemicals (ECs) has been hypothesized as a cause for declining male reproductive health. Understanding the long-term effects of EC exposure on reproductive health in humans requires animal models and exposure to ‘real life’, environmentally relevant, mixtures during development, a life stage of particular sensitivity to ECs. The aim of this study was to evaluate the effects of in utero and post-natal exposure to environmentally relevant levels of ECs, via sewage sludge application to pasture, on the adult male sheep testis. Hormones, liver concentrations of candidate ECs and Sertoli and germ cell numbers in testes of adult rams that were exposed to ECs in sewage sludge in utero, and until weaning via maternal exposure, and post-weaning via grazing pastures fertilized with sewage sludge, were quantified. Evaluated as a single group, exposure to sludge ECs was without significant effect on most parameters. However, a more detailed study revealed that 5 of 12 sludge-exposed rams exhibited major spermatogenic abnormalities. These consisted of major reductions in germ cell numbers per testis or per Sertoli cell and more Sertoli cell-only tubules, when compared with controls, which did not show any such changes. The sludge-related spermatogenic changes in the five affected animals were significantly different from controls (p < 0.001); Sertoli cell number was unaffected. Hormone profiles and liver candidate EC concentrations were not measurably affected by exposure. We conclude that developmental exposure of male sheep to real-world mixtures of ECs can result in major reduction in germ cell numbers, indicative of impaired sperm production, in a proportion of exposed males. The individual-specific effects are presumed to reflect EC effects on a heterogeneous population in which some individuals may be more susceptible to adverse EC effects. Such effects of EC exposure in humans could have adverse consequences for sperm counts and fertility in some exposed males.
Journal of Environmental Monitoring | 2010
Stewart M. Rhind; Carol E. Kyle; C. Mackie; L. McDonald; Zulin Zhang; E. I. Duff; Michelle Bellingham; Maria R. Amezaga; Beatrice Mandon-Pepin; Benoit Loup; Corinne Cotinot; Neil P. Evans; Richard M. Sharpe; Paul A. Fowler
This paper reports patterns of accumulation of selected EDCs in adult and fetal livers of sheep exposed to sewage sludge-treated pastures, at different times and at two stages of development.
Animal | 2010
Susan Rhind; Neil P. Evans; Michelle Bellingham; Richard M. Sharpe; Corinne Cotinot; Beatrice Mandon-Pepin; Benoit Loup; Kevin D. Sinclair; Richard G. Lea; Paola Pocar; Bernd Fischer; E van der Zalm; K Hart; J-S Schmidt; Maria R. Amezaga; Paul A. Fowler
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.
Molecular and Cellular Endocrinology | 2013
Michelle Bellingham; Maria R. Amezaga; Beatrice Mandon-Pepin; Christopher J.B. Speers; Carol E. Kyle; Neil P. Evans; Richard M. Sharpe; Corinne Cotinot; Stewart M. Rhind; Paul A. Fowler
Highlights • In-utero exposure to environmental chemicals disturbs ovary development.• We investigated differential effects of exposure before or after conception.• The fetal ovary is most affected by exposure after conception.• Unexpectedly, response to continuous exposure was less severe than previously.• Alterations in profiles of in utero exposure to chemicals may be most damaging.
Reproductive Toxicology | 2016
Pasi Huuskonen; Maria R. Amezaga; Michelle Bellingham; Lucy H. Jones; Markus Storvik; Merja R. Häkkinen; Leea Keski-Nisula; Seppo Heinonen; Peter J. O’Shaughnessy; Paul A. Fowler; Markku Pasanen
Highlights • The effects of maternal smoking on the term placental proteome was studied.• Maternal smoking significantly affected 18% of protein spots.• Maternal smoking affects systems controlling the development and function of placenta.• The observed placental changes may contribute to the lowered birth weights.
Molecular and Cellular Endocrinology | 2013
Sabine Hombach-Klonisch; Adrian Danescu; Farhana Begum; Maria R. Amezaga; Stewart M. Rhind; Richard M. Sharpe; Neil P. Evans; Michelle Bellingham; Corinne Cotinot; Beatrice Mandon-Pepin; Paul A. Fowler; Thomas Klonisch
Highlights ► We used an ovine prenatal exposure model to a mixture of environmental chemicals. ► Male fetal thyroids of mixed exposure groups have reduced follicle counts. ► Fetal thyroids of animals in mixed exposure groups show increased proliferation. ► Thyroid glands of exposed fetuses showed regions with impaired differentiation. ► Fetal plasma levels of free thyroid hormones were normal.