Maria Rangel
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Rangel.
PLOS ONE | 2009
Susana Oliveira; Jorge P. Pinto; Gonçalo Picarote; Vera Marisa Costa; Félix Carvalho; Maria Rangel; Maria de Sousa; Sérgio F. de Almeida
Endoplasmic reticulum (ER) stress induces a complex network of pathways collectively termed the unfolded protein response (UPR). The clarification of these pathways has linked the UPR to the regulation of several physiological processes. However, its crosstalk with cellular iron metabolism remains unclear, which prompted us to examine whether an UPR affects the expression of relevant iron-related genes. For that purpose, the HepG2 cell line was used as model and the UPR was activated by dithiothreitol (DTT) and homocysteine (Hcys). Here, we report that hepcidin, a liver secreted hormone that shepherds iron homeostasis, exhibits a biphasic pattern of expression following UPR activation: its levels decreased in an early stage and increased with the maintenance of the stress response. Furthermore, we show that immediately after stressing the ER, the stress-inducible transcription factor CHOP depletes C/EBPα protein pool, which may in turn impact on the activation of hepcidin transcription. In the later period of the UPR, CHOP levels decreased progressively, enhancing C/EBPα-binding to the hepcidin promoter. In addition, analysis of ferroportin and ferritin H revealed that the transcript levels of these iron-genes are increased by the UPR signaling pathways. Taken together, our findings suggest that the UPR can have a broad impact on the maintenance of cellular iron homeostasis.
Journal of Biological Inorganic Chemistry | 2001
Maria Rangel; Asuka Tamura; Chihiro Fukushima; Hiromu Sakurai
Abstract. The insulin-like action of a novel class of potential insulin-mimetic complexes was investigated in terms of free fatty acid (FFA) release from isolated rat adipocytes. Vanadyl complexes such as VO(ema)2 [(bis(2-ethyl-3-hydroxy-4-pyrone)VO], VO(mpp)2 [bis(3-hydroxy-2-methyl-4(1H)-pyridinone)VO], VO(dmpp)2 [bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinone)VO] and VO(empp)2 [bis(2-ethyl-3-hydroxy-1-methyl-4(1H)-pyridinone)VO] were tested together with vanadyl sulfate for comparison. The inhibitory effect of the vanadium complexes on FFA release, from rat adipocytes treated with epinephrine, is dependent on concentration and for that reason the results are reported in terms of the IC50 value, the 50% inhibition concentration. The results show that all the complexes have an inhibitory effect on FFA release and that two pyridinone complexes, VO(mpp)2 and VO(empp)2, have a significantly better insulin-mimetic activity than that of vanadyl sulfate.
Microbes and Infection | 2010
Sofia Sousa Fernandes; Ana Nunes; Ana Rita Gomes; Baltazar de Castro; Robert C. Hider; Maria Rangel; Rui Appelberg; Maria Salomé Gomes
Iron accumulation has been suggested to contribute to an increase of the susceptibility to mycobacterial infections. In this study we tested the effect of an array of iron chelating ligands of the 3-hydroxy-4-pyridinone family, in the intramacrophagic growth of Mycobacterium avium. We found that bidentate chelators, namely N-alkyl-3-hydroxy-4-pyridinones and N-aryl-3-hydroxy-4-pyridinones, did not affect the growth of M. avium inside mouse macrophages. In the case of the hexadentate chelators, those synthesized using an alkylamine (CP262) or a benzene ring (CP252) to link the three bidentate units, did not have an inhibitory effect on intramacrophagic growth of M. avium while those synthesized from a tripodal structure to anchor the bidentate units were capable of inhibiting the intramacrophagic growth of M. avium. The molecule we designated CP777 had the strongest inhibitory activity. The growth-reducing activity of CP777 was abrogated when this molecule was saturated with iron. These results confirm that iron deprivation, by the use of iron chelating compounds, restricts M. avium growth and that new iron chelators offer an approach to controlling mycobacterial infections.
Polyhedron | 1997
John Burgess; Baltazar de Castro; Celeste Oliveira; Maria Rangel; Walkiria Schlindweind
Abstract The synthesis and characterization of several new bis-ligand-oxo-vanadium(IV) complexes containing 1,2-substituted-3-hydroxy-4-pyridinonates or ethylmaltolate (3-hydroxy-2-ethyl-pyranonate) are reported. Structures are proposed based on EXAFS data.
Journal of Inorganic Biochemistry | 2009
Maria Rangel; M. João Amorim; Ana Nunes; Andreia Leite; Eulália Pereira; Baltazar de Castro; Carla Sousa; Yutaka Yoshikawa; Hiromu Sakurai
A previous evaluation of the insulin-like activity of three 3-hydroxy-4-pyridinonato oxidovanadium(IV) complexes raised questions about structure/activity relationships, namely the influence of the hydrophilic/lipophilic balance of the complex and the capacity of the ligand to stabilize the +4 oxidation state of vanadium ion, on achieving an positive effect. To address these questions, we synthesized six new oxidovanadium(IV) complexes with variable hydrophilic/lipophilic balance, obtained by introducing different substituents on the nitrogen atom, and used two 3-hydroxy-4-pyrones as starting reagents to provide methyl and ethyl groups in the ortho position of the ring. For the new and previously reported complexes, we studied the oxidation-reduction properties and insulin-like activity in terms of inhibitory effect on Free fatty acid (FFA) release in isolated rat adipocytes. The results obtained show that only one of the complexes, Bis(3-hydroxy-1(H)-2-methyl-4-pyridonato)oxidovanadium(IV), VO(mpp)(2), exhibits a significantly greater capacity to inhibit FFA release than VOSO(4) and consequently is worthy to be considered for further studies. The establishment of structure activity relationships was not attainable but this study brings new information about the influence of some properties of the compounds on the achievement of an insulin-like effect. The results reveal that: (i) the oxidation-reduction cycles of the complexes are identical; (ii) the presence of more lipophilic substituents on the nitrogen atom does not enhance insulin-like properties; (iii) a high solubility in water proved to be not sufficient for a positive activity in inhibiting FFA release; (iv) a small molecular size may be an important property for reaching the right targets.
Journal of Inorganic Biochemistry | 2011
Tânia Moniz; M. João Amorim; Rita Ferreira; Ana Nunes; Ana M. G. Silva; Carla Queirós; Andreia Leite; Paula Gameiro; Bruno Sarmento; Fernando Remião; Yutaka Yoshikawa; Hiromu Sakurai; Maria Rangel
Results from an investigation in an in vivo model of STZ-induced diabetic rats demonstrate that compound bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate)zinc(II), Zn(dmpp)(2), significantly lowers the blood glucose levels of individuals, thus showing evidence of glucose lowering activity. The compound was selected from a set of eight zinc(II) complexes of 3-hydroxy-4-pyridinones with diverse lipophilicity that were prepared and characterized in our laboratory. Assessment of insulin-like activity of the complexes was firstly performed in vitro by measuring the inhibition of FFA release in isolated rat adipocytes. The results indicate that compounds bis(2-methyl-3-hydroxy-4-pyridinonate)zinc(II), Zn(mpp)(2) and Zn(dmpp)(2) display significantly higher activity than that of the respective positive control thus suggesting its selection for in vivo tests. Safety evaluation of the active zinc(II) compounds was performed in freshly isolated rat hepatocytes. The results support that cell viability is not significantly different from the control set after 1 and 2h of incubation with both zinc(II) complexes.
Journal of Inorganic Biochemistry | 2000
M. Margarida C. A. Castro; Carlos F. G. C. Geraldes; Paula Gameiro; Eulália Pereira; Baltazar de Castro; Maria Rangel
The interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) was studied in aqueous solution using a combination of multinuclear NMR and EPR spectroscopies, as well as potentiometry and cyclic voltammetry. The different species in solution were identified and characterized, and their pKa values and stability constants determined. The vanadium complexes formed in solution are strongly dependent on media composition (ionic strength, presence of buffer), pH and metal-to-ligand ratio (M:L). Two major species--V(V)/dmpp and V(V)/(dmpp)2--are formed in a 140 mM NaCl solution within the pH range 4.5 to 9.0, when M:L = 1:2. In the presence of excess ligand (M:L < or = 1:5), only the 1:2 complex is present, and at pH < 4 paramagnetic species are detected by EPR in solution, thus indicating a reducing capacity of the ligand. Cyclic voltammetry shows that redox processes in solution are not just electron transfer, but are accompanied by chemical reactions. The pK, values and stability constants were determined both by 51V NMR spectroscopy and potentiometry. The present results have a particular interest in the understanding of the aqueous solution chemistry in aerobic conditions of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato) oxovanadium(IV) complex, VO(dmpp)2, a vanadium compound with potential insulin-mimetic properties.
Carbohydrate Polymers | 2014
Ana Fernandes; Galya Ivanova; Natércia F. Brás; Nuno Mateus; Maria J. Ramos; Maria Rangel; Victor de Freitas
Inclusion complex formation between the multiple equilibrium forms of cyanidin-3-O-glucoside (cy3glc) and β-cyclodextrin (β-CD) was investigated using a combined approach of NMR spectroscopy and Molecular Dynamics simulation. Diffusion ordered NMR spectroscopy (DOSY) and study of nuclear Overhauser effects (NOE) were used to determine the selective intermolecular interactions and structure of these complexes in aqueous solution. The observed chemical shift displacements of resonance signals of protons from the interior of β-CD cavity and protons belonging to the hemiketal (B) and cis-chalcone forms (Cc), the diffusion measurements using DOSY and the NOE studies have anticipated the formation of an inclusion complex between these two forms and β-CD. The analysis of the NMR spectral data has shown no evidence of internal interaction between β-CD and the flavylium cation (AH(+)) or trans-chalcone (Ct) forms of cy3glc. The hemiketal formed a 1:1 inclusion complex with β-cyclodextrin in which the pyranic C ring is deeply included inside the β-CD cavity while B ring lies on the plane of the wider rim of β-CD. The structure of the complexes was also clarified through a theoretical approach by Molecular Dynamics simulation.
PLOS ONE | 2013
João Arezes; Mónica Costa; Inês Passos Vieira; Vera Dias; Xiaole Kong; Rui Fernandes; Matthijn R. J. Vos; Anna Carlsson; Yuri G. M. Rikers; Graça Porto; Maria Rangel; Robert C. Hider; Jorge P. Pinto
Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI). NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.
Talanta | 2015
Ruth Suárez; Raquel B. R. Mesquita; Maria Rangel; Víctor Cerdà; António O.S.S. Rangel
The speciation of iron using the newly synthesized 3-hydroxy-1(H)-2-methyl-4-pyridinone by solid phase spectrophotometry in a microsequential injection lab-on-valve (µSI-LOV-SPS) methodology is described. Iron was retained in a reusable column, Nitrilotriacetic Acid Superflow (NTA) resin, and the ligand was used as both chromogenic and eluting reagent. This approach, analyte retention and matrix removal, enabled the assessment of iron (III) and total iron content in fresh waters and high salinity coastal waters with direct sample introduction, in the range of 20.0-100 µg/L. with a LOD of 9 µg/L. The overall effluent production was 2 mL, corresponding to the consumption of 0.48 µg of 2-metil-3-hydroxy-4-pyridinone, 0.34 mg of NaHCO3, 16 mg of HNO3, 4.4 µg H2O2 and 400µL of sample. Four reference samples were analyzed and a relative deviation<10% was obtained; furthermore, several bathing waters (♯13) were analyzed using the developed method and the results were comparable to those obtained by atomic absorption spectrophotometry (relative deviations<6%).