Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Regina D’Império-Lima is active.

Publication


Featured researches published by Maria Regina D’Império-Lima.


PLOS Pathogens | 2015

In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

Henrique Borges da Silva; Raíssa Fonseca; Alexandra dos Anjos Cassado; Érika Machado de Salles; Maria Nogueira de Menezes; Jean Langhorne; Katia R. Perez; Iolanda M. Cuccovia; Bernhard Ryffel; Vasco M. Barreto; Claudio R. F. Marinho; Silvia Beatriz Boscardin; José M. Alvarez; Maria Regina D’Império-Lima; Carlos E. Tadokoro

Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.


BMC Microbiology | 2012

Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

Marcelle R. M. de Andrade; Eduardo P. Amaral; Simone C. M. Ribeiro; Fabrício Moreira Almeida; Tanara V Peres; Verônica R. Lanes; Maria Regina D’Império-Lima; Elena B. Lasunskaia

BackgroundTuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity.ResultsBone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production.ConclusionsThe data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.


BMC Microbiology | 2016

N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions

Eduardo P. Amaral; Elisabete Lopes Conceição; Diego L. Costa; Michael Santos Rocha; Jamocyr Moura Marinho; Marcelo Cordeiro-Santos; Maria Regina D’Império-Lima; Theolis Barbosa; Alan Sher; Bruno B. Andrade

BackgroundMycobacterium tuberculosis infection is thought to induce oxidative stress. N-acetyl-cysteine (NAC) is widely used in patients with chronic pulmonary diseases including tuberculosis due to its mucolytic and anti-oxidant activities. Here, we tested whether NAC exerts a direct antibiotic activity against mycobacteria.MethodsOxidative stress status in plasma was compared between pulmonary TB (PTB) patients and those with latent M. tuberculosis infection (LTBI) or healthy uninfected individuals. Lipid peroxidation, DNA oxidation and cell death, as well as accumulation of reactive oxygen species (ROS) were measured in cultures of primary human monocyte-derived macrophages infected with M. tuberculosis and treated or not with NAC. M. tuberculosis, M. avium and M. bovis BCG cultures were also exposed to different doses of NAC with or without medium pH adjustment to control for acidity. The anti-mycobacterial effect of NAC was assessed in M. tuberculosis infected human THP-1 cells and bone marrow-derived macrophages from mice lacking a fully functional NADPH oxidase system. The capacity of NAC to control M. tuberculosis infection was further tested in vivo in a mouse (C57BL/6) model.ResultsPTB patients exhibited elevated levels of oxidation products and a reduction of anti-oxidants compared with LTBI cases or uninfected controls. NAC treatment in M. tuberculosis-infected human macrophages resulted in a decrease of oxidative stress and cell death evoked by mycobacteria. Importantly, we observed a dose-dependent reduction in metabolic activity and in vitro growth of NAC treated M. tuberculosis, M. avium and M. bovis BCG. Furthermore, anti-mycobacterial activity in infected macrophages was shown to be independent of the effects of NAC on the host NADPH oxidase system in vitro. Short-term NAC treatment of M. tuberculosis infected mice in vivo resulted in a significant reduction of mycobacterial loads in the lungs.ConclusionsNAC exhibits potent anti-mycobacterial effects and may limit M. tuberculosis infection and disease both through suppression of the host oxidative response and through direct antimicrobial activity.


Purinergic Signalling | 2017

The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control

Vanessa Ribeiro Figliuolo; Suzana Passos Chaves; Luiz Eduardo Baggio Savio; Maria Luiza Thorstenberg; Érika Machado de Salles; Christina Maeda Takiya; Maria Regina D’Império-Lima; Herbert Leonel de Matos Guedes; Bartira Rossi-Bergmann; Robson Coutinho-Silva

Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.


PLOS Pathogens | 2017

P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria

Érika Machado de Salles; Maria Nogueira de Menezes; Renan Siqueira; Henrique Borges da Silva; Eduardo P. Amaral; Sheyla Inés Castillo-Méndez; Isabela Cunha; Alexandra dos Anjos Cassado; Flávia Sarmento Vieira; David N. Olivieri; Carlos E. Tadokoro; José M. Alvarez; Robson Coutinho-Silva; Maria Regina D’Império-Lima

A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.


Frontiers in Immunology | 2017

P2X7 Receptor in Bone Marrow-Derived Cells Aggravates Tuberculosis Caused by Hypervirulent Mycobacterium bovis

Caio César Barbosa Bomfim; Eduardo P. Amaral; Alexandra dos Anjos Cassado; Érika Machado de Salles; Rogério Silva do Nascimento; Elena B. Lasunskaia; Mario H. Hirata; José M. Alvarez; Maria Regina D’Império-Lima

Tuberculosis (TB) remains a serious public health problem despite the great scientific advances in the recent decades. We have previously shown that aggressive forms of TB caused by hypervirulent strains of Mycobacterium tuberculosis and Mycobacterium bovis are attenuated in mice lacking the P2X7 receptor, an ion channel activated by extracellular ATP. Therefore, P2X7 receptor is a potential target for therapeutic intervention. In vitro, hypervirulent mycobacteria cause macrophage death by a P2X7-dependent mechanism that facilitates bacillus dissemination. However, as P2X7 receptor is expressed in both bone marrow (BM)-derived cells and lung structural cells, several cellular mechanisms can operate in vivo. To investigate whether the presence of P2X7 receptor in BM-derived cells contributes to TB severity, we generated chimeric mice by adoptive transfer of hematopoietic cells from C57BL/6 or P2X7−/− mice into CD45.1 irradiated mice. After infection with hypervirulent mycobacteria (MP287/03 strain of M. bovis), P2X7−/−>CD45.1 mice recapitulated the TB resistance observed in P2X7−/− mice. These chimeric mice showed lower lung bacterial load and attenuated pneumonia compared to C57BL/6>CD45.1 mice. Lung necrosis and bacterial dissemination to the spleen and liver were also reduced in P2X7−/−>CD45.1 mice compared to C57BL/6>CD45.1 mice. Furthermore, an immature-like myeloid cell population showing a Ly6Gint phenotype was observed in the lungs of infected C57BL/6 and C57BL/6>CD45.1 mice, whereas P2X7−/− and P2X7−/−>CD45.1 mice showed a typical neutrophil (Ly6Ghi) population. This study clearly demonstrates that P2X7 receptor in BM-derived cells plays a critical role in the progression of severe TB.


Scientific Reports | 2017

Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis

Ivan P. Nascimento; Dunia Rodriguez; Carina C. Santos; Eduardo P. Amaral; Henrique Krambeck Rofatto; Ana Paula Junqueira-Kipnis; Eduardo Dc Gonçalves; Maria Regina D’Império-Lima; Mario H. Hirata; Célio Lopes Silva; Nathalie Winter; Brigitte Gicquel; Kingston H. G. Mills; Mariagrazia Pizza; Rino Rappuoli; Luciana C.C. Leite

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0–3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-β as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.


The Journal of Infectious Diseases | 2018

Inhibiting Adenosine Receptor Signaling Promotes Accumulation of Effector CD4+ T Cells in the Lung Parenchyma During Severe Tuberculosis

Eduardo P. Amaral; Érika Machado de Salles; Caio César Barbosa Bomfim; Rafael Moysés Salgado; Fabrício Moreira Almeida; Paula Carolina de Souza; José M. Alvarez; Mario H. Hirata; Elena B. Lasunskaia; Maria Regina D’Império-Lima

BACKGROUND Tuberculous pneumonia, necrotic granulomatous lesions, and bacterial dissemination characterize severe forms of mycobacterial infection. METHODS To evaluate the pulmonary CD4+ T-cell response during severe tuberculosis, C57BL/6 mice were infected with approximately 100 bacilli of 3 hypervirulent mycobacterial isolates (Mycobacterium tuberculosis strain Beijing 1471 and Mycobacterium bovis strains B2 and MP287/03) or the H37Rv M tuberculosis strain as reference for mycobacterial virulence. Because high expression of both CD39 and CD73 ectonucleotidases was detected on parenchymal CD4+ T cells, we investigated whether CD4+ T-cell suppression in the context of severe disease was due to the extracellular adenosine accumulation that resulted from tissue damage. RESULTS Lowest expression of CD69, which is an activation marker implicated in maintaining cells in tissues, was observed in lungs from mice displaying the most severe pulmonary pathology. Reduced interferon (IFN)γ-producing CD4+ T cells were also found in the lung of these mice. Intranasal administration of the adenosine receptor antagonist caffeine substantially enhanced the frequency and number of parenchymal CD4+ T cells as well as both CD69 expression and IFNγ production. CONCLUSIONS These results indicate that adenosine, which may be generated by extracellular adenosine triphosphate degradation, impairs the parenchymal CD4+ T-cell response and contributes to the development of severe tuberculosis.


PLOS Neglected Tropical Diseases | 2018

MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control

Danni Yohani Santana; Rafael Moysés Salgado; Marina Fevereiro; Rogério Silva do Nascimento; Raíssa Fonseca; Niels Olsen Saraiva Câmara; Sabrina Epiphanio; Claudio R. F. Marinho; Maria Luiza M. Barreto-Chaves; Maria Regina D’Império-Lima; José M. Alvarez

Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.


Frontiers in Immunology | 2018

Lysosomal Cathepsin Release Is Required for NLRP3-Inflammasome Activation by Mycobacterium tuberculosis in Infected Macrophages

Eduardo P. Amaral; Nicolas Riteau; Mahtab Moayeri; Nolan K. Maier; Katrin D. Mayer-Barber; R. M. R. Pereira; Silvia Lage; Andre Kubler; William R. Bishai; Maria Regina D’Império-Lima; Alan Sher; Bruno B. Andrade

Lysosomal cathepsin B (CTSB) has been proposed to play a role in the induction of acute inflammation. We hypothesised that the presence of active CTSB in the cytosol is crucial for NLRP3-inflammasome assembly and, consequently, for mature IL-1β generation after mycobacterial infection in vitro. Elevated levels of CTSB was observed in the lungs of mice and rabbits following infection with Mycobacterium tuberculosis (Mtb) H37Rv as well as in plasma from acute tuberculosis patients. H37Rv-infected murine bone marrow-derived macrophages (BMDMs) displayed both lysosomal leakage, with release of CTSB into the cytosol, as well as increased levels of mature IL-1β. These responses were diminished in BMDM infected with a mutant H37Rv deficient in ESAT-6 expression. Pharmacological inhibition of cathepsin activity with CA074-Me resulted in a substantial reduction of both mature IL-1β production and caspase-1 activation in infected macrophages. Moreover, cathepsin inhibition abolished the interaction between NLRP3 and ASC, measured by immunofluorescence imaging in H37Rv-infected macrophages, demonstrating a critical role of the enzyme in NLRP3-inflammasome activation. These observations suggest that during Mtb infection, lysosomal release of activated CTSB and possibly other cathepsins inhibitable by CA07-Me is critical for the induction of inflammasome-mediated IL-1β processing by regulating NLRP3-inflammasome assembly in the cytosol.

Collaboration


Dive into the Maria Regina D’Império-Lima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge