Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Rodríguez-Muñoz is active.

Publication


Featured researches published by María Rodríguez-Muñoz.


Neuropsychopharmacology | 2012

The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control

María Rodríguez-Muñoz; Pilar Sánchez-Blázquez; Ana Vicente-Sánchez; Esther Berrocoso; Javier Garzón

The capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception. We now report that mu-opioid receptors (MOR) and NMDAR NR1 subunits associate in the postsynaptic structures of PAG neurons. Morphine disrupts this complex by protein kinase-C (PKC)-mediated phosphorylation of the NR1 C1 segment and potentiates the NMDAR–CaMKII, pathway that is implicated in morphine tolerance. Inhibition of PKC, but not PKA or GRK2, restored the MOR–NR1 association and rescued the analgesic effect of morphine as well. The administration of N-methyl-D-aspartic acid separated the MOR–NR1 complex, increased MOR Ser phosphorylation, reduced the association of the MOR with G-proteins, and diminished the antinociceptive capacity of morphine. Inhibition of PKA, but not PKC, CaMKII, or GRK2, blocked these effects and preserved morphine antinociception. Thus, the opposing activities of the MOR and NMDAR in pain control affect their relation within neurons of structures such as the PAG. This finding could be exploited in developing bifunctional drugs that would act exclusively on those NMDARs associated with MORs.


Neuropsychopharmacology | 2004

RGSZ1 and GAIP regulate μ- but not δ-opioid receptors in mouse CNS: Role in tachyphylaxis and acute tolerance

Javier Garzón; María Rodríguez-Muñoz; Almudena López-Fando; Antonio García-España; Pilar Sánchez-Blázquez

In the CNS, the regulators of G-protein signaling (RGS) proteins belonging to the Rz subfamily, RGS19 (Gα interacting protein (GAIP)) and RGS20 (Z1), control the activity of opioid agonists at μ but not at δ receptors. Rz proteins show high selectivity in deactivating Gαz-GTP subunits. After reducing the expression of RGSZ1 with antisense oligodeoxynucleotides (ODN), the supraspinal antinociception produced by morphine, heroin, DAMGO ([D-Ala2, N-MePhe4,Gly-ol5]-enkephalin), and endomorphin-1 was notably increased. No change was observed in the effect of endomorphin-2. This agrees with the proposed existence of different μ receptors for the endomorphins. The activities of DPDPE ([D-Pen2,5]-enkephalin) and [D-Ala2] deltorphin II, agonists at δ receptors, were also unchanged. Knockdown of GAIP and of the GAIP interacting protein C-terminus (GIPC) led to changes in agonist effects at μ but not at δ receptors. The impairment of RGSZ1 extended the duration of morphine analgesia by at least 1 h beyond that observed in control animals. CTOP (Cys2, Tyr3, Orn5, Pen7-amide) antagonized morphine analgesia when given during the period in which the effect of morphine was enhanced by RGSZ1 knockdown. Thus, in naive mice, morphine tachyphylaxis originated in the presence of the opioid agonist and during the analgesia time course. The knockdown of RGSZ1 facilitated the development of tolerance to a single dose of morphine and accelerated tolerance to continuous delivery of the opioid. These results indicate that μ but not δ receptors are linked to Rz regulation. The μ receptor-mediated activation of Gz proteins is effective at recruiting the adaptive mechanisms leading to the development of opioid desensitization.


Neuropharmacology | 2005

Morphine alters the selective association between mu-opioid receptors and specific rgs proteins in mouse periaqueductal gray matter

Javier Garzón; María Rodríguez-Muñoz; Pilar Sánchez-Blázquez

In the CNS, several regulators of G-protein signalling (RGS) modulate the activity of mu-opioid receptors. In pull-down assays performed on membranes from mouse periaqueductal gray matter (PAG), mu-opioid receptors co-precipitated with delta-opioid receptors, Gi/o/z/q proteins, and the regulators of G-protein signalling RGS4, RGS9-2, RGS14, RGSZ1 and RGSZ2. No RGS2, RGS7, RGS10 and RGS11 proteins were associated with the mu receptors in these PAG membranes. In mice, an intracerebroventricular dose of 10 nmol morphine produced acute tolerance at mu receptors but did not disrupt the co-precipitation of mu-delta receptor complexes. However, this opioid reduced by more than 50% the co-precipitation of G alpha i/o/z subunits with mu receptors, and altered their association with some of the RGS proteins at 30 min, 3 h and 24 h after its administration. The association of RGS9-2 with mu receptors diminished by 30-40% 24 h after the administration of morphine, while that of RGSZ2 and of RGSZ1 increased. Morphine treatment recruited RGS4 to the PAG membranes, and 30 min and 3 h after the opioid challenge its association with mu receptors had increased. However, 24 h after morphine administration, the co-precipitation of RGS4 had decreased by about 30%. The opioid produced no change in the membrane levels of RGS9-2, RGS14, RGSZ1 and RGSZ2. Thus, in PAG synaptosomal membranes, a dynamic and selective link exists between, mu-opioid receptors, Gi/o/z proteins and certain RGS proteins.


Neuropsychopharmacology | 2005

The RGSZ2 protein exists in a complex with μ-opioid receptors and regulates the desensitizing capacity of Gz proteins

Javier Garzón; María Rodríguez-Muñoz; Almudena López-Fando; Pilar Sánchez-Blázquez

The regulator of G-protein signaling RGS17(Z2) is a member of the RGS-Rz subfamily of GTPase-activating proteins (GAP) that efficiently deactivate GαzGTP subunits. We have found that in the central nervous system (CNS), the levels of RGSZ2 mRNA and protein are elevated in the hypothalamus, midbrain, and pons-medulla, and that RGSZ2 is glycosylated in synaptosomal membranes isolated from CNS tissue. In analyzing the function of RGSZ2 in the CNS, we found that when the expression of RGSZ2 was impaired, the antinociceptive response to morphine and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO) augmented. This potentiation involved μ-opioid receptors and increased tolerance to further doses of these agonists administered 24 h later. High doses of morphine promoted agonist desensitization even within the analgesia time-course, a phenomenon that appears to be related to the great capacity of morphine to activate Gz proteins. In contrast, the knockdown of RGSZ2 proteins did not affect the activity of δ receptor agonists, [D-Pen2,5]-enkephalin (DPDPE), and [D-Ala2] deltorphin II. In membranes from periaqueductal gray matter (PAG), both RGSZ2 and the related RGS20(Z1) co-precipitated with μ-opioid receptors. While a morphine challenge reduced the association of Gi/o/z with μ receptors, it increased their association with the RGSZ2 and RGSZ1 proteins. However, only Gαz subunits co-precipitated with RGSZ2. Doses of morphine that produced acute tolerance maintained the association of Gα subunits with RGSZ proteins even after the analgesic effects had ceased. These results indicate that both RGSZ1 and RGSZ2 proteins influence μ receptor signaling by sequestering Gα subunits, therefore behaving as effector antagonists.


Neuropsychopharmacology | 2007

Sumoylated RGS-Rz Proteins Act as Scaffolds for Mu-Opioid Receptors and G-Protein Complexes in Mouse Brain

María Rodríguez-Muñoz; David Bermúdez; Pilar Sánchez-Blázquez; Javier Garzón

The RGSZ1 and RGSZ2 proteins, members of the RGS-Rz subfamily of GTPase-activating proteins (GAP), are involved in Mu-opioid receptor desensitization. The expression of these proteins, as well as of their main target the Gz protein, is virtually restricted to the nervous tissue. In synaptosomal membranes, these Rz proteins undergo post-translational modifications such as glycosylation and phosphorylation, and they may covalently attach to small ubiquitin-like modifier (SUMO) proteins. While RGSZ1 exists in conjugated and non-conjugated forms, RGSZ2 is mostly conjugated to SUMO-1, SUMO-2 and SUMO-3 proteins. These sumoylated forms of the GAPs readily associated with Mu-opioid receptors but they associated only poorly with Delta receptors. Furthermore, Gαi2 and Gαz subunits co-precipitated with the sumoylated forms of RGSZ1/Z2 proteins, but to a lesser extent with the Ser phosphorylated SUMO-free form of RGSZ1. Upon Mu-opioid receptor activation, there is a strong increase in the association of Gα proteins with RGSZ2 proteins that persists for intervals longer than 24 h. This effect probably accounts for their role in Mu-opioid receptor desensitization. Only a moderate increase was observed with RGSZ1, the non-sumoylated form of which probably acts as an efficient GAP for these Gα subunits. Therefore, sumoylation regulates the biological activity of RGS-Rz proteins and it is likely that it serves to switch their behavior, from that of a GAP for activated Gα subunits to that of a scaffold protein for specific signaling proteins.


Frontiers in Pharmacology | 2014

The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia

Pilar Sánchez-Blázquez; María Rodríguez-Muñoz; Javier Garzón

The endocannabinoid system is widespread throughout the central nervous system and its type 1 receptor (CB1) plays a crucial role in preventing the neurotoxicity caused by activation of glutamate N-methyl-D-aspartate receptors (NMDARs). Indeed, it is the activity of NMDARs themselves that provides the demands on the endogenous cannabinoids in order to control their calcium currents. Therefore, a physiological role of this system is to maintain NMDAR activity within safe limits, thereby protecting neural cells from excitotoxicity. Thus, cannabinoids may be able to control NMDAR overactivation-related neural dysfunctions; however, the major obstacles to the therapeutic utilization of these compounds are their psychotropic effects and negative influence on cognitive performance. Studies in humans have indicated that abuse of smoked cannabis can promote psychosis and even circumstantially precipitate symptoms of schizophrenia, although the latter appears to require a prior vulnerability in the individual. It is possible that cannabinoids provoke psychosis/schizophrenia reflecting a mechanism common to neuroprotection: the reduction of NMDAR activity. Cannabinoids are proposed to produce such effect by reducing the pre-synaptic release of glutamate or interfering with post-synaptic NMDAR-regulated signaling pathways. The efficacy of such control requires the endocannabinoid system to apply its negative influence in a manner that is proportional to the strength of NMDAR signaling. Thus, cannabinoids acting at the wrong time or exerting an inappropriate influence on their receptors may cause NMDAR hypofunction. The purpose of the present review is to draw the attention of the reader to the newly described functional and physical CB1–NMDAR association, which may elucidate the scenario required for the rapid and efficacious control of NMDAR activity. Whether alterations in these mechanisms may increase NMDAR hypofunction leading to vulnerability to schizophrenia will be outlined.


PLOS ONE | 2010

Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling

Pilar Sánchez-Blázquez; María Rodríguez-Muñoz; Javier Garzón

Background In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCγ, and afterwards, the interplay between PKCγ, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. Methodology/Principal Findings Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCγ to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. Conclusions/Significance Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCγ and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition.


Current Drug Abuse Reviews | 2012

Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports their Cross-Regulation: Molecular Implications for Opioid Tolerance

Javier Garzón; María Rodríguez-Muñoz; Pilar Sánchez-Blázquez

In the nervous system, the interaction of opioids like morphine and its derivatives, with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of analgesic tolerance, as well as physical dependence. Tolerance implies that increasing doses of the drug are required to achieve the same effect, a phenomenon that contributes significantly to the social problems surrounding recreational opioid abuse. In recent years, our understanding of the mechanisms that control MOR function in the nervous system, and that eventually produce opioid tolerance, has increased greatly. Pharmacological studies have identified a number of signaling proteins involved in morphine-induced tolerance, including the N-methyl-D-aspartate acid glutamate receptor (NMDAR), nitric oxide synthase (NOS), protein kinase C (PKC), protein kinase A (PKA), calcium (Ca²⁺)/calmodulin (CaM)-dependent kinase II (CaMKII), delta-opioid receptor (DOR) and the regulators of G-protein signaling (RGS) proteins. There is general agreement on the critical role of the NMDAR/nNOS/CaMKII pathway in this process, which is supported by the recent demonstration of a physical association between MORs and NMDARs in post-synaptic structures. Indeed, it is feasible that treatments that diminish morphine tolerance may target distinct elements within the same regulatory MOR-NMDAR pathway. Accordingly, we propose a model that incorporates the most relevant signaling components implicated in opioid tolerance in which, certain signals originating from the activated MOR are perceived by the associated NMDAR, which in turn exerts a negative feedback effect on MOR signaling. MOR- and NMDAR-mediated signals work together in a sequential and interconnected manner to ultimately induce MOR desensitization. Future studies of these phenomena should focus on adding further components to this signaling pathway in order to better define the mechanism underlying MOR desensitization in neural cells.


Current Drug Abuse Reviews | 2008

Do Pharmacological Approaches that Prevent Opioid Tolerance Target Different Elements in the Same Regulatory Machinery

Javier Garzón; María Rodríguez-Muñoz; Pilar Sánchez-Blázquez

In the nervous system, the interaction of opioids like heroin and morphine with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of tolerance to these opioids, as well as physical dependence. Tolerance implies that higher doses of these drugs must be consumed in order to obtain an equivalent sensation, a situation that contributes notably to the social problems surrounding recreational opioid abuse. The mechanisms that promote opioid tolerance involve a series of adaptive changes in the MOR and in the post-receptor signalling elements. Pharmacological studies have consistently identified a number of signalling proteins relevant to morphine-induced tolerance, including the delta-opioid receptor (DOR), protein kinase C (PKC), protein kinase A (PKA), calcium/calmodulin-dependent kinase II (CaMKII), nitric oxide synthase (NOS), N-methyl-D-aspartate acid glutamate receptors (NMDAR), and regulators of G-signalling (RGS) proteins. Thus, it is feasible that these treatments which diminish morphine tolerance target distinct elements within the same regulatory machinery. In this scheme, the signals originated at the agonist-activated MORs would be recognised by elements such as the NMDARs, which in turn exert a negative feedback on MOR-evoked signalling. This process involves DOR regulation of MORs, MOR-induced activation of NMDARs (probably via the regulation of Src, recruiting PKC and Galpha subunits) and the NMDAR-mediated activation of CaMKII. The active CaMKII promotes the sequestering of morphine-activated Gbetagamma dimers by phosducin-like proteins (PhLP) and of Galpha subunits by RGS proteins and tolerance to opioids like morphine develops. Future efforts to study these phenomena should focus on fitting additional pieces into this puzzle in order to fully define the mechanism underlying the desensitization of MORs in neural cells.


Neuropharmacology | 2003

The GBeta5 subunit that associates with the R7 subfamily of RGS proteins regulates mu-opioid effects

Pilar Sánchez-Blázquez; Marta Rodríguez-Díaz; Almudena López-Fando; María Rodríguez-Muñoz; Javier Garzón

The Gbeta5 protein, which is similar in sequence to other G-protein beta subunits, mainly associates with the G-protein gamma-like (GGL) domains of the R7 subfamily of regulators of G-protein signalling (RGS) proteins. This paper reports the presence of the Gbeta5 protein and its mRNA in all areas of mouse CNS, and also its involvement in the cellular signals initiated at mu- and delta-opioid receptors. The expression of Gbeta5 and RGS9-2 proteins (member of the R7 subfamily of RGS) was reduced by blocking their mRNAs with antisense oligodeoxynucleotides (ODN). Knock-down of these proteins enhanced the potency and duration of antinociception promoted by morphine and [D-Ala2, N-MePhe4,Gly-ol5]-enkephalin (DAMGO), agonists at mu opioid receptors. However, the activity of the selective agonist at delta opioid receptors, [D-Pen(2,5)]-encephalin (DPDPE), appeared to be reduced. A single intracerebroventricular (i.c.v.) ED80 analgesic dose of morphine gave rise to acute tolerance in control mice, but did not promote tolerance in Gbeta5 or RGS9-2 knock-down animals. In a model of sustained morphine treatment, the impairment of Gbeta5 proteins facilitated the development of tolerance. This treatment did not alter the incidence of jumping behaviour precipitated by naloxone 3 days after commencing with chronic morphine. These results show differences in the signalling regulation of G-proteins when activated by mu or delta opioid agonists. For mu opioid receptors, acute tolerance, but probably not long-term tolerance, appears to depend on the function of Gbeta5 subunits and associated RGS proteins.

Collaboration


Dive into the María Rodríguez-Muñoz's collaboration.

Top Co-Authors

Avatar

Pilar Sánchez-Blázquez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Garzón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Vicente-Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Almudena López-Fando

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Concha Bailón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Garzón-Niño

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ricardo Martínez-Murillo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge