Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Rosa.
Butlletí de la Societat Catalana de Matemàtiques | 2016
Massa Esteve; Maria Rosa
La publicacio, l’any 1591, de l’obra In artem analyticen isagoge de Francois Viete (1540–1603) va constituir un pas endavant important en el desenvolupament del llenguatge simbolic. A comencaments del segle xvii la difusio de l’obra de Viete va pro- vocar que altres autors, com ara Pietro Mengoli (1626/1627–1686), tambe consideressin la utilitat dels procediments algebraics per resoldre tot tipus de problemes. Mengoli va seguir el cami de Viete tot construint una geometria d’especies, Geometriae speciosae elementa (1659), que li va permetre emprar conjuntament l’algebra i la geometria per resoldre problemes de quadratura. Mengoli, com Viete, va considerar la seva algebra una tecnica en la qual els simbols eren utilitzats no unicament per representar nombres sino tambe valors de qualsevulla magnitud. Va tractar amb especies, formes, taules triangulars, quasi raons i raons logaritmiques. Tanmateix, l’aspecte mes innovador del seu treball va ser l’us de les lletres per tractar directament les figures geome- triques mitjancant les seves expressions algebraiques. En aquest article, analitzo la construccio algebraica d’aquestes figures geometriques, l’us de les taules triangulars i la demostracio molt original que va fer Mengoli per trobar el maxim d’aquestes figures geometriques abans del desenvolupament del calcul de Newton i Leibniz. Aquestes analisis i l . l ustren les idees matematiques de Mengoli sobre la funcio especifica del llenguatge simbolic com a mitja d’expressio i com a eina analitica
Bshm Bulletin: Journal of The British Society for The History of Mathematics | 2017
Massa Esteve; Maria Rosa
In the seventeenth century many changes occurred in the practice of mathematics. An essential change was the establishment of a symbolic language, so that the new language of symbols and techniques could be used to obtain new results. Pietro Mengoli (1626/7–86), a pupil of Cavalieri, considered the use of symbolic language and algebraic procedures essential for solving all kinds of problems. Following the algebraic research of Viete, Mengoli constructed a geometry of species, Geometriae Speciosae Elementa (1659), which allowed him to use algebra in geometry in complementary ways to solve quadrature problems, and later to compute the quadrature of the circle in his Circolo (1672). In a letter to Oldenburg as early as 1673, Gottfried Wilhelm Leibniz (1646–1716) expressed an interest in Mengolis works, and again later in 1676, when he wrote some excerpts from Mengolis Circolo. The aim of this paper is to show how in these excerpts Leibniz dealt with Mengolis ideas as well as to provide new insights into Leibnizs mathematical interpretations and commentsDedicated to the memory of Jacqueline Stedall In the seventeenth century many changes occurred in the practice of mathematics. An essential change was the establishment of a symbolic language, so that the new language of symbols and techniques could be used to obtain new results. Pietro Mengoli (1626/7–86), a pupil of Cavalieri, considered the use of symbolic language and algebraic procedures essential for solving all kinds of problems. Following the algebraic research of Viète, Mengoli constructed a geometry of species, Geometriae Speciosae Elementa (1659), which allowed him to use algebra in geometry in complementary ways to solve quadrature problems, and later to compute the quadrature of the circle in his Circolo (1672). In a letter to Oldenburg as early as 1673, Gottfried Wilhelm Leibniz (1646–1716) expressed an interest in Mengolis works, and again later in 1676, when he wrote some excerpts from Mengolis Circolo. The aim of this paper is to show how in these excerpts Leibniz dealt with Mengolis ideas as well as to provide new insights into Leibnizs mathematical interpretations and comments.
Quaderns d'història de l'enginyeria | 2018
Massa Esteve; Maria Rosa
Quaderns d'història de l'enginyeria | 2018
Massa Esteve; Maria Rosa
Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas | 2017
Massa Esteve; Maria Rosa
SCM/Notícies | 2017
Massa Esteve; Maria Rosa
Explorant la volta del cel: estudis sobre història de l'astronomia i de la meteorologia, 2017, ISBN 978-84-15672-46-3, págs. 139-152 | 2017
Massa Esteve; Maria Rosa
Mètode: revista de difusió de la investigació de la Universitat de de Valencia | 2016
Massa Esteve; Maria Rosa
Archive | 2015
Massa Esteve; Maria Rosa
Actes d'història de la ciència i de la tècnica | 2015
Massa Esteve; Maria Rosa