Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Rosa López-Huertas is active.

Publication


Featured researches published by María Rosa López-Huertas.


Nature Reviews Microbiology | 2009

Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs

Mayte Coiras; María Rosa López-Huertas; Mayte Pérez-Olmeda; José Alcamí

HIV-1 can infect both activated and resting, non-dividing cells, following which the viral genome can be permanently integrated into a host cell chromosome. Latent HIV-1 reservoirs are established early during primary infection and constitute a major barrier to eradication, even in the presence of highly active antiretroviral therapy. This Review analyses the molecular mechanisms that are necessary for the establishment of HIV-1 latency and their relationships with different cellular and anatomical reservoirs, and discusses the current treatment strategies for targeting viral persistence in reservoirs, their main limitations and future perspectives.


Journal of Virological Methods | 2005

Two RT-PCR based assays to detect human metapneumovirus in nasopharyngeal aspirates

María Rosa López-Huertas; Inmaculada Casas; Belsy Acosta-Herrera; M.L. García; María Teresa Coiras; Pilar Pérez-Breña

Abstract Two sensitive and specific RT-PCR assays were standardised for testing the presence of human metapneumovirus. A total of 300 nasopharyngeal aspirates collected from infants suffering from bronchiolitis since October 2000 to June 2003 and shown previously as negative to common respiratory viruses were examined. Matrix and polymerase viral genes, which show a low rate of variation, were chosen to design amplification assays to ensure that any genotype of the human metapneumovirus could be detected. A RT-PCR followed by a reverse line blotting hybridisation was developed for viral polymerase gene. For the matrix gene, after the RT-PCR assay, a subsequent nested PCR was carried out. Both assays had similar sensitivity, equivalent to 0.1 TCID50 of human metapneumovirus strain NL/1/99 which was used as the positive control. The human metapneumovirus was present in 16.6% of the specimens studied. The approaches described below are not only a robust method for rapid diagnosis of the human metapneumovirus, but also to establish an etiological surveillance tool for epidemiological studies. Based on the results obtained, human metapneumovirus infections in Madrid followed a seasonal pattern, with most of the infections occurring between February and April.


Journal of Medical Virology | 2005

Oligonucleotide array for simultaneous detection of respiratory viruses using a reverse-line blot hybridization assay.

Mayte Coiras; María Rosa López-Huertas; Guillermo López-Campos; J.C. Aguilar; Pilar Pérez-Breña

The interest in developing new diagnostic methods based on arrays of multiple probes to detect and type simultaneously a wide range of different infectious agents is increasing. This becomes a necessity in the case of infectious agents such as respiratory viruses that cause diseases with very similar signs and symptoms. Such tools will permit rapid and accurate diagnosis of different agents causing respiratory infection leading to the most adequate prevention and/or treatment measures. In this article a reverse‐line blot hybridization (RLB) assay for the detection of a wide range of respiratory viruses is presented and evaluated for its usefulness in routine diagnosis. This assay employs an array of 18 oligonucleotide probes immobilized on a nylon membrane. Biotin‐labeled PCR products obtained with two multiplex reverse transcription (RT)‐polymerase chain reaction (PCR) assays described previously, which allow for the detection of fourteen different groups of respiratory viruses, were hybridized to the oligonucleotide array. Detection was performed using a chemiluminescent method. The standardization of the method showed that the RLB assay could be an alternative to the nested PCR assay for enhancing the sensitivity in the detection of the amplified products, avoiding the problem of cross‐over contamination, increasing the specificity, and therefore simplifying the method. This is of main interest in laboratories with few facilities. The feasibility and accuracy of the RT‐PCR‐RLB assay for detecting respiratory viruses proves that such approach could be a first stage to develop a microarray assay for routine diagnosis of infectious diseases. J. Med. Virol. 76:256–264, 2005.


Retrovirology | 2007

Basal shuttle of NF-κB/IκBα in resting T lymphocytes regulates HIV-1 LTR dependent expression

Mayte Coiras; María Rosa López-Huertas; Joaquín Rullas; María Mittelbrunn; José Alcamí

BackgroundIn HIV-infected T lymphocytes, NF-κB/Rel transcription factors are major elements involved in the activation of LTR-dependent transcription from latency. Most NF-κB heterodimer p65/p50 is sequestered as an inactive form in the cytoplasm of resting T lymphocytes via its interaction with IκB inhibitors. In these cells, both absolute HIV latency and low level ongoing HIV replication have been described. These situations could be related to differences in the balance between NF-κB and IκBα ratio. Actually, control of IκBα by cellular factors such as Murr-1 plays a critical role in maintaining HIV latency in unstimulated T lymphocytes. Formerly, our group demonstrated the presence of nuclear IκBα in T cells after PMA activation. Now we attempt to determine the dynamics of NF-κB/IκBα nucleocytosolic transport in absence of activation as a mechanism to explain both the maintenance of latency and the existence of low level ongoing HIV replication in resting CD4+ T lymphocytes.Results and conclusionWe show that the inhibition of the nuclear export by leptomycin B in resting CD4+ T cells resulted in nuclear accumulation of both IκBα and p65/RelA, as well as formation of NF-κB/IκBα complexes. This proves the existence of a rapid shuttling of IκBα between nucleus and cytosol even in absence of cellular activation. The nuclear accumulation of IκBα in resting CD4+ T lymphocytes results in inhibition of HIV-LTR dependent transcription as well as restrains HIV replication in CD4+ T lymphocytes. On the other hand, basal NF-κB activity detected in resting CD4+ T lymphocytes was related to low level HIV replication in these cells.


Proteomics | 2008

Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents

Mayte Coiras; Emilio Camafeita; María Rosa López-Huertas; Enrique Calvo; Juan Antonio López; José Alcamí

Host–pathogen interactions involve protein expression changes within both the host and the pathogen. An understanding of the nature of these interactions provides insight into metabolic processes and critical regulatory events of the host cell as well as into the mechanisms of pathogenesis by infectious microorganisms. Pathogen exposure induces changes in host proteins at many functional levels including cell signaling pathways, protein degradation, cytokines and growth factor production, phagocytosis, apoptosis, and cytoskeletal rearrangement. Since proteins are responsible for the cell biological functions, pathogens have evolved to manipulate the host cell proteome to achieve optimal replication. Intracellular pathogens can also change their proteome to adapt to the host cell and escape from immune surveillance, or can incorporate cellular proteins to invade other cells. Given that the interactions of intracellular infectious agents with host cells are mainly at the protein level, proteomics is the most suitable tool for investigating these interactions. Proteomics is the systematic analysis of proteins, particularly their interactions, modifications, localization and functions, that permits the study of the association between pathogens with their host cells as well as complex interactions such as the host–vector–pathogen interplay. A review on the most relevant proteomic applications used in the study of host–pathogen interactions is presented.


Journal of Biological Chemistry | 2011

Protein Kinase Cθ Is a Specific Target for Inhibition of the HIV Type 1 Replication in CD4+ T Lymphocytes

María Rosa López-Huertas; Elena Mateos; Gema Díaz-Gil; Francisco Gómez-Esquer; María Sánchez del Cojo; José Alcamí; Mayte Coiras

Integration of HIV-1 genome in CD4+ T cells produces latent reservoirs with long half-life that impedes the eradication of the infection. Control of viral replication is essential to reduce the size of latent reservoirs, mainly during primary infection when HIV-1 infects CD4+ T cells massively. The addition of immunosuppressive agents to highly active antiretroviral therapy during primary infection would suppress HIV-1 replication by limiting T cell activation, but these agents show potential risk for causing lymphoproliferative disorders. Selective inhibition of PKCθ, crucial for T cell function, would limit T cell activation and HIV-1 replication without causing general immunosuppression due to PKCθ being mostly expressed in T cells. Accordingly, the effect of rottlerin, a dose-dependent PKCθ inhibitor, on HIV-1 replication was analyzed in T cells. Rottlerin was able to reduce HIV-1 replication more than 20-fold in MT-2 (IC50 = 5.2 μm) and Jurkat (IC50 = 2.2 μm) cells and more than 4-fold in peripheral blood lymphocytes (IC50 = 4.4 μm). Selective inhibition of PKCθ, but not PKCδ or -ζ, was observed at <6.0 μm, decreasing the phosphorylation at residue Thr538 on the kinase catalytic domain activation loop and avoiding PKCθ translocation to the lipid rafts. Consequently, the main effector at the end of PKCθ pathway, NF-κB, was repressed. Rottlerin also caused a significant inhibition of HIV-1 integration. Recently, several specific PKCθ inhibitors have been designed for the treatment of autoimmune diseases. Using these inhibitors in combination with highly active antiretroviral therapy during primary infection could be helpful to avoid massive viral infection and replication from infected CD4+ T cells, reducing the reservoir size at early stages of the infection.


Journal of Biological Chemistry | 2013

The Presence of HIV-1 Tat Protein Second Exon Delays Fas Protein-mediated Apoptosis in CD4+ T Lymphocytes: A POTENTIAL MECHANISM FOR PERSISTENT VIRAL PRODUCTION*

María Rosa López-Huertas; Elena Mateos; María Sánchez del Cojo; Francisco Gómez-Esquer; Gema Díaz-Gil; Sara Rodríguez-Mora; Juan Antonio López; Enrique Calvo; Guillermo López-Campos; José Alcamí; Mayte Coiras

Background: HIV-infected T cells are quite resistant to apoptosis. Results: Intracellular expression of HIV-1 Tat in T cells stabilized the mitochondrial membrane and reduced caspase activation mainly through NF-κB activation. Conclusion: Intracellular Tat induced resistance to FasL-mediated apoptosis in T cells mainly through the second exon. Significance: Tat-mediated protection against apoptosis may be a mechanism for HIV-1 persistence. HIV-1 replication is efficiently controlled by the regulator protein Tat (101 amino acids) and codified by two exons, although the first exon (1–72 amino acids) is sufficient for this process. Tat can be released to the extracellular medium, acting as a soluble pro-apoptotic factor in neighboring cells. However, HIV-1-infected CD4+ T lymphocytes show a higher resistance to apoptosis. We observed that the intracellular expression of Tat delayed FasL-mediated apoptosis in both peripheral blood lymphocytes and Jurkat cells, as it is an essential pathway to control T cell homeostasis during immune activation. Jurkat-Tat cells showed impairment in the activation of caspase-8, deficient release of mitochondrial cytochrome c, and delayed activation of both caspase-9 and -3. This protection was due to a profound deregulation of proteins that stabilized the mitochondrial membrane integrity, such as heat shock proteins, prohibitin, or nucleophosmin, as well as to the up-regulation of NF-κB-dependent anti-apoptotic proteins, such as BCL2, c-FLIPS, XIAP, and C-IAP2. These effects were observed in Jurkat expressing full-length Tat (Jurkat-Tat101) but not in Jurkat expressing the first exon of Tat (Jurkat-Tat72), proving that the second exon, and particularly the NF-κB-related motif ESKKKVE, was necessary for Tat-mediated protection against FasL apoptosis. Accordingly, the protection exerted by Tat was independent of its function as a regulator of both viral transcription and elongation. Moreover, these data proved that HIV-1 could have developed strategies to delay FasL-mediated apoptosis in infected CD4+ T lymphocytes through the expression of Tat, thus favoring the persistent replication of HIV-1 in infected T cells.


Retrovirology | 2008

Caspase-3-mediated cleavage of p65/RelA results in a carboxy-terminal fragment that inhibits IκBα and enhances HIV-1 replication in human T lymphocytes

Mayte Coiras; María Rosa López-Huertas; Elena Mateos; José Alcamí

BackgroundDegradation of p65/RelA has been involved in both the inhibition of NF-κB-dependent activity and the onset of apoptosis. However, the mechanisms of NF-κB degradation are unclear and can vary depending on the cell type. Cleavage of p65/RelA can produce an amino-terminal fragment that was shown to act as a dominant-negative inhibitor of NF-κB, thereby promoting apoptosis. However, the opposite situation has also been described and the production of a carboxy-terminal fragment that contains two potent transactivation domains has also been related to the onset of apoptosis. In this context, a carboxy-terminal fragment of p65/RelA (ΔNH2p65), detected in non-apoptotic human T lymphocytes upon activation, has been studied. T cells constitute one of the long-lived cellular reservoirs of the human immunodeficiency virus type 1 (HIV-1). Because NF-κB is the most important inducible element involved in initiation of HIV-1 transcription, an adequate control of NF-κB response is of paramount importance for both T cell survival and viral spread. Its major inhibitor IκBα constitutes a master terminator of NF-κB response that is complemented by degradation of p65/RelA.Results and conclusionsIn this study, the function of a caspase-3-mediated carboxy-terminal fragment of p65/RelA, which was detected in activated human peripheral blood lymphocytes (PBLs), was analyzed. Cells producing this truncated p65/RelA did not undergo apoptosis but showed a high viability, in spite of caspase-3 activation. ΔNH2p65 lacked most of DNA-binding domain but retained the dimerization domain, NLS and transactivation domains. Consequently, it could translocate to the nucleus, associate with NF-κB1/p50 and IκBα, but could not bind -κB consensus sites. However, although ΔNH2p65 lacked transcriptional activity by itself, it could increase NF-κB activity in a dose-dependent manner by hijacking IκBα. Thus, its expression resulted in a persistent transactivation activity of wild-type p65/RelA, as well as an improvement of HIV-1 replication in PBLs. Moreover, ΔNH2p65 was increased in the nuclei of PMA-, PHA-, and TNFα-activated T cells, proving this phenomenon was related to cell activation. These data suggest the existence of a novel mechanism for maintaining NF-κB activity in human T cells through the binding of the carboxy-terminal fragment of p65/RelA to IκBα in order to protect wild-type p65/RelA from IκBα inhibition.


Cell Reports | 2016

IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle

Mayte Coiras; Mercedes Bermejo; Benjamin Descours; Elena Mateos; Javier García-Pérez; María Rosa López-Huertas; Michael M. Lederman; Monsef Benkirane; José Alcamí

SUMMARY HIV-1 post-integration latency in CD4+ lymphocytes is responsible for viral persistence despite treatment, but mechanisms involved in the establishment of latent viral reservoirs are not fully understood. We determined that both interleukin 2 (IL-2) and IL-7 induced SAMHD1 phosphorylation in T592, abrogating its antiviral activity. However, IL-7 caused a much more profound stimulatory effect on HIV-1 reverse transcription and integration than IL-2 that required chemokine co-stimulation. Both cytokines barely induced transcription due to low NF-κB induction, favoring the establishment of latent reservoirs. Effect of IL-7 on SAMHD1 phosphorylation was confirmed in IL-7-treated patients (ACTG 5214 study). Dasatinib—a tyrosine-kinase inhibitor—blocked SAMHD1 phosphorylation induced by IL-2 and IL-7 and restored HIV-1 restriction. We propose that γc-cytokines play a major role in the reservoir establishment not only by driving homeostatic proliferation but also by increasing susceptibility of CD4+ lymphocytes to HIV-1 infection through SAMHD1 inactivation.


Biochemical Pharmacology | 2015

Analysis of protein kinase C theta inhibitors for the control of HIV-1 replication in human CD4+ T cells reveals an effect on retrotranscription in addition to viral transcription.

Mercedes Bermejo; María Rosa López-Huertas; Joe Hedgpeth; Elena Mateos; Sara Rodríguez-Mora; Maria J. Maleno; Montserrat Plana; John Swindle; José Alcamí; Mayte Coiras

HIV-1 infection cannot be cured due to reservoirs formed early after infection. Decreasing the massive CD4+ T cell activation that occurs at the beginning of the disease would delay reservoir seeding, providing a better prognosis for patients. CD4+ T cell activation is mediated by protein kinase C (PKC) theta (θ), which is involved in T-cell proliferation, as well as NF-κB, NF-AT, and AP-1 activation. We found that PKCθ activity increased viral replication, but also that HIV-1 induced higher activation of PKCθ in infected CD4+ T cells, creating a feedback loop. Therefore, specific inhibition of PKCθ activity could contribute to control HIV-1 replication. We tested the efficacy of seven PKCθ specific inhibitors to control HIV-1 replication in CD4+ T cells and selected two of the more potent and safer: CGX1079 and CGX0471. They reduced PKCθ phosphorylation at T538 and its translocation to the plasma membrane, which correlated with decreased HIV-1 retrotranscription through partial inhibition of SAMHD1 antiviral activity, rendering lower proviral integration. CGX1079 and CGX0471 also interfered with viral transcription, which would reduce the production of new virions, as well as the subsequent spread and infection of new targets that would increase the reservoir size. CGX1079 and CGX0471 did not completely abrogate T-cell functions such as proliferation and CD8-mediated release of IFN-γ in PBMCs from HIV-infected patients, thereby avoiding general immunosuppresion. Consequently, using PKCθ inhibitors as adjuvant of antiretroviral therapy in recently infected patients would decrease the pool of activated CD4+ T cells, thwarting proviral integration and reducing the reservoir size.

Collaboration


Dive into the María Rosa López-Huertas's collaboration.

Top Co-Authors

Avatar

Mayte Coiras

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

José Alcamí

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Elena Mateos

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Sara Rodríguez-Mora

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Mercedes Bermejo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Pilar Pérez-Breña

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayte Pérez-Olmeda

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge